File size: 5,177 Bytes
68ace03
 
 
 
 
 
7451ea2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68ace03
 
 
 
f714e96
68ace03
 
7be2365
 
68ace03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7451ea2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
base_model:
- Sao10K/L3-8B-Lunaris-v1
- merge
- mergekit
- lazymergekit
model-index:
- name: L3-12B-Lunaris-v1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 69.09
      name: strict accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tremontaine/L3-12B-Lunaris-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 32.18
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tremontaine/L3-12B-Lunaris-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 8.16
      name: exact match
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tremontaine/L3-12B-Lunaris-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.94
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tremontaine/L3-12B-Lunaris-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 4.05
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tremontaine/L3-12B-Lunaris-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 30.83
      name: accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tremontaine/L3-12B-Lunaris-v1
      name: Open LLM Leaderboard
---

# L3-12B-Lunaris-v1

L3-12B-Lunaris-v1 is a self merge of the following model using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing) with --clone-tensors argument added:
* [Sao10K/L3-8B-Lunaris-v1](https://huggingface.co./Sao10K/L3-8B-Lunaris-v1)

Works best with lower temperature, between 0.8-0.9.

## 🧩 Configuration

```yaml
dtype: bfloat16
merge_method: passthrough
slices:
- sources:
  - layer_range: [0, 8]
    model: Sao10K/L3-8B-Lunaris-v1
    parameters:
      scale_rules:
      - filter: value
        value: 0.8
- sources:
  - layer_range: [8, 16]
    model: Sao10K/L3-8B-Lunaris-v1
    parameters:
      scale_rules:
      - filter: value
        value: 0.8
- sources:
  - layer_range: [16, 24]
    model: Sao10K/L3-8B-Lunaris-v1
    parameters:
      scale_rules:
      - filter: value
        value: 1.0
- sources:
  - layer_range: [24, 32]
    model: Sao10K/L3-8B-Lunaris-v1
    parameters:
      scale_rules:
      - filter: value
        value: 1.0
- sources:
  - layer_range: [0, 8]
    model: Sao10K/L3-8B-Lunaris-v1
    parameters:
      scale_rules:
      - filter: value
        value: 0.7
- sources:
  - layer_range: [8, 16]
    model: Sao10K/L3-8B-Lunaris-v1
    parameters:
      scale_rules:
      - filter: value
        value: 0.7
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Tremontaine/L3-12B-Lunaris-v1"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Tremontaine__L3-12B-Lunaris-v1)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |25.38|
|IFEval (0-Shot)    |69.09|
|BBH (3-Shot)       |32.18|
|MATH Lvl 5 (4-Shot)| 8.16|
|GPQA (0-shot)      | 7.94|
|MuSR (0-shot)      | 4.05|
|MMLU-PRO (5-shot)  |30.83|