RonanMcGovern
commited on
Commit
·
0b6cac6
1
Parent(s):
5344658
update notes on inference
Browse files
README.md
CHANGED
@@ -10,14 +10,48 @@ tags:
|
|
10 |
- llama
|
11 |
- llama-2
|
12 |
- hosted inference
|
|
|
|
|
|
|
13 |
---
|
14 |
# Llama 2 - hosted inference
|
15 |
|
16 |
This is simply an 8-bit version of the Llama-2-7B model.
|
17 |
- 8-bits allows the model to be below 10 GB
|
18 |
- This allows for hosted inference of the model on the model's home page
|
|
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
Below follows information on the original Llama 2 model...
|
23 |
|
|
|
10 |
- llama
|
11 |
- llama-2
|
12 |
- hosted inference
|
13 |
+
- 8 bit
|
14 |
+
- 8bit
|
15 |
+
- 8-bit
|
16 |
---
|
17 |
# Llama 2 - hosted inference
|
18 |
|
19 |
This is simply an 8-bit version of the Llama-2-7B model.
|
20 |
- 8-bits allows the model to be below 10 GB
|
21 |
- This allows for hosted inference of the model on the model's home page
|
22 |
+
- Note that inference may be slow unless you have a HuggingFace Pro plan.
|
23 |
|
24 |
+
If you want to run inference yourself (e.g. in a Colab notebook) you can try:
|
25 |
+
```
|
26 |
+
!pip install -q -U git+https://github.com/huggingface/accelerate.git
|
27 |
+
!pip install -q -U bitsandbytes
|
28 |
+
!pip install -q -U git+https://github.com/huggingface/transformers.git
|
29 |
+
|
30 |
+
model_id = 'Trelis/Llama-2-7b-chat-hf-hosted-inference-8bit'
|
31 |
+
|
32 |
+
import transformers
|
33 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline, TextStreamer
|
34 |
+
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto')
|
36 |
+
|
37 |
+
#Llama 2 Inference
|
38 |
+
def stream(user_prompt):
|
39 |
+
system_prompt = 'You are a helpful assistant that provides accurate and concise responses'
|
40 |
+
|
41 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
42 |
+
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
43 |
+
|
44 |
+
prompt = f"{B_INST} {B_SYS}{system_prompt.strip()}{E_SYS}{user_prompt.strip()} {E_INST}\n\n"
|
45 |
+
|
46 |
+
inputs = tokenizer([prompt], return_tensors="pt").to("cuda:0")
|
47 |
+
|
48 |
+
streamer = TextStreamer(tokenizer)
|
49 |
+
|
50 |
+
# Despite returning the usual output, the streamer will also print the generated text to stdout.
|
51 |
+
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=500)
|
52 |
+
|
53 |
+
stream('Count to ten')
|
54 |
+
```
|
55 |
|
56 |
Below follows information on the original Llama 2 model...
|
57 |
|