File size: 1,920 Bytes
25a7d5a c476e67 25a7d5a c476e67 25a7d5a c476e67 25a7d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
library_name: peft
tags:
- parquet
- text-classification
datasets:
- ag_news
metrics:
- accuracy
base_model: neibla/distilbert-base-uncased-finetuned-emotion
model-index:
- name: neibla_distilbert-base-uncased-finetuned-emotion-finetuned-lora-ag_news
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: ag_news
type: ag_news
config: default
split: test
args: default
metrics:
- type: accuracy
value: 0.939078947368421
name: accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# neibla_distilbert-base-uncased-finetuned-emotion-finetuned-lora-ag_news
This model is a fine-tuned version of [neibla/distilbert-base-uncased-finetuned-emotion](https://huggingface.co./neibla/distilbert-base-uncased-finetuned-emotion) on the ag_news dataset.
It achieves the following results on the evaluation set:
- accuracy: 0.9391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| accuracy | train_loss | epoch |
|:--------:|:----------:|:-----:|
| 0.2512 | None | 0 |
| 0.9261 | 0.2630 | 0 |
| 0.9305 | 0.1988 | 1 |
| 0.9357 | 0.1769 | 2 |
| 0.9391 | 0.1612 | 3 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2 |