--- license: apache-2.0 library_name: peft tags: - parquet - text-classification datasets: - ag_news metrics: - accuracy base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-lora-ag_news results: - task: type: text-classification name: Text Classification dataset: name: ag_news type: ag_news config: default split: test args: default metrics: - type: accuracy value: 0.9418421052631579 name: accuracy --- # distilbert-base-uncased-finetuned-lora-ag_news This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the ag_news dataset. It achieves the following results on the evaluation set: - accuracy: 0.9418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | accuracy | train_loss | epoch | |:--------:|:----------:|:-----:| | 0.1830 | None | 0 | | 0.9287 | 0.2464 | 0 | | 0.9326 | 0.1907 | 1 | | 0.9375 | 0.1687 | 2 | | 0.9418 | 0.1531 | 3 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.2