File size: 1,969 Bytes
ba60d1a a9e1e05 ba60d1a a9e1e05 ba60d1a a9e1e05 ba60d1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: peft
tags:
- parquet
- text-classification
datasets:
- tweet_eval
metrics:
- accuracy
base_model: Jeevesh8/init_bert_ft_qqp-28
model-index:
- name: Jeevesh8_init_bert_ft_qqp-28-finetuned-lora-tweet_eval_irony
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
config: irony
split: validation
args: irony
metrics:
- type: accuracy
value: 0.6167539267015707
name: accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Jeevesh8_init_bert_ft_qqp-28-finetuned-lora-tweet_eval_irony
This model is a fine-tuned version of [Jeevesh8/init_bert_ft_qqp-28](https://huggingface.co./Jeevesh8/init_bert_ft_qqp-28) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- accuracy: 0.6168
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| accuracy | train_loss | epoch |
|:--------:|:----------:|:-----:|
| 0.5204 | None | 0 |
| 0.5246 | 0.8160 | 0 |
| 0.5319 | 0.6805 | 1 |
| 0.5644 | 0.6623 | 2 |
| 0.5770 | 0.6547 | 3 |
| 0.6010 | 0.6398 | 4 |
| 0.6147 | 0.6311 | 5 |
| 0.6031 | 0.6199 | 6 |
| 0.6168 | 0.6153 | 7 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2 |