--- license: apache-2.0 --- ## Overview This model was presented at the [WMT24 Shared Task on Translation into Low-Resource Languages of Spain](https://www2.statmt.org/wmt24/romance-task.html) as a submission by the [Transducens](https://transducens.dlsi.ua.es/) team from the [Universitat d'Alacant](https://www.ua.es/). It is a many-to-many model capable of translating between several languages of the Iberian Peninsula. **The model is based on [NLLB-1.3B](https://huggingface.co./facebook/nllb-200-1.3B), fine-tuned for the following languages:** + Spanish ↔ Asturian + Spanish ↔ Aragonese + Spanish ↔ Aranese + Spanish ↔ Galician + Spanish ↔ Catalan + Spanish ↔ Valencian + Catalan ↔ Aranese **The new language tokens are:** + Aragonese: arg_Latn + Aranese: arn_Latn + Valencian: val_Latn ## Usage ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained("Transducens/IbRo-nllb") tokenizer = AutoTokenizer.from_pretrained("Transducens/IbRo-nllb") tokenizer.src_lang = "spa_Latn" sentence = "«Actualmente, tenemos ratones de cuatro meses de edad que antes solían ser diabéticos y que ya no lo son», agregó." inputs = tokenizer(sentence, return_tensors="pt") translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["arg_Latn"]) print(tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)) ``` ## Citation If you use this model, please cite it as follows: ``` @inproceedings{wmt2024-galiano-jimenez, title = "Universitat d'{A}lacant's Submission to the {WMT} 2024 {S}hared {T}ask on {T}ranslating into {L}ow-{R}esource {L}anguages of {S}pain", author = "Galiano-Jim{\'e}nez, Aar{\'o}n and S{\'a}nchez-Cartagena, V{\'i}ctor M and P{\'e}rez-Ortiz, Juan Antonio and S{\'a}nchez-Mart{\'i}nez, Felipe", editor = "Koehn, Philipp and Haddow, Barry and Kocmi, Tom and Monz, Christof", booktitle = "Proceedings of the Ninth Conference on Machine Translation", month = nov, year = "2024", address = "Miami", publisher = "Association for Computational Linguistics", } ``` ## Acknowledgements This model has been produced as part of the research project [Lightweight neural translation technologies for low-resource languages (LiLowLa)](https://transducens.dlsi.ua.es/lilowla/) (PID2021-127999NB-I00) funded by the Spanish Ministry of Science and Innovation (MCIN), the Spanish Research Agency (AEI/10.13039/501100011033) and the European Regional Development Fund A way to make Europe.