End of training
Browse files- README.md +88 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: apple/mobilevit-small
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: my_food_model
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# my_food_model
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.0492
|
22 |
+
- Accuracy: 0.7236
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 32
|
43 |
+
- eval_batch_size: 32
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 128
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 25
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
56 |
+
| 4.4987 | 1.0 | 592 | 4.4835 | 0.1002 |
|
57 |
+
| 3.6382 | 2.0 | 1184 | 3.4318 | 0.2707 |
|
58 |
+
| 2.9497 | 3.0 | 1776 | 2.5897 | 0.3945 |
|
59 |
+
| 2.586 | 4.0 | 2368 | 2.1261 | 0.4824 |
|
60 |
+
| 2.2806 | 5.0 | 2960 | 1.8201 | 0.5501 |
|
61 |
+
| 2.0928 | 6.0 | 3552 | 1.6291 | 0.5896 |
|
62 |
+
| 1.9839 | 7.0 | 4144 | 1.4954 | 0.6145 |
|
63 |
+
| 1.8465 | 8.0 | 4736 | 1.4209 | 0.6333 |
|
64 |
+
| 1.6939 | 9.0 | 5328 | 1.3486 | 0.6493 |
|
65 |
+
| 1.6212 | 10.0 | 5920 | 1.2959 | 0.6616 |
|
66 |
+
| 1.6672 | 11.0 | 6512 | 1.2299 | 0.6744 |
|
67 |
+
| 1.5973 | 12.0 | 7104 | 1.2018 | 0.6871 |
|
68 |
+
| 1.5419 | 13.0 | 7696 | 1.1750 | 0.6928 |
|
69 |
+
| 1.5003 | 14.0 | 8288 | 1.1297 | 0.7017 |
|
70 |
+
| 1.4908 | 15.0 | 8880 | 1.1184 | 0.7030 |
|
71 |
+
| 1.4033 | 16.0 | 9472 | 1.0983 | 0.7125 |
|
72 |
+
| 1.4015 | 17.0 | 10064 | 1.0832 | 0.7159 |
|
73 |
+
| 1.3651 | 18.0 | 10656 | 1.0728 | 0.7134 |
|
74 |
+
| 1.3698 | 19.0 | 11248 | 1.0678 | 0.7166 |
|
75 |
+
| 1.4136 | 20.0 | 11840 | 1.0541 | 0.7217 |
|
76 |
+
| 1.4679 | 21.0 | 12432 | 1.0542 | 0.7208 |
|
77 |
+
| 1.3328 | 22.0 | 13024 | 1.0466 | 0.7253 |
|
78 |
+
| 1.2773 | 23.0 | 13616 | 1.0655 | 0.7188 |
|
79 |
+
| 1.342 | 24.0 | 14208 | 1.0471 | 0.7236 |
|
80 |
+
| 1.3437 | 25.0 | 14800 | 1.0492 | 0.7236 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.45.1
|
86 |
+
- Pytorch 2.4.0
|
87 |
+
- Datasets 3.0.1
|
88 |
+
- Tokenizers 0.20.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 20105428
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b8a7685e5a6115a2508e504bd03fa062c954ad174f80ea14da967468082571a
|
3 |
size 20105428
|