--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - generated_from_trainer model-index: - name: mistral_fine_out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: out/train_alpaca.jsonl type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./mistral_fine_out sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: auto_resume_from_checkpoint: true resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: 0.05 eval_table_size: eval_table_max_new_tokens: 128 save_steps: debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" model_config: sliding_window: 4096 ```

The fine tuning script used for launch was from https://github.com/totallylegitco/healthinsurance-llm w/ run_remote.sh and an INPUT_MODEL=mistral # TotallyLegitCo/fighthealthinsurance_model_v0.3 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) on the [syntehtic-appeal](https://huggingface.co./datasets/TotallyLegitCo/synthetic-appeals) dataset. It achieves the following results on the evaluation set: - Loss: 1.3954 ## Model description Generate health insurance appeals. Early work. ## Intended uses & limitations Generate health insurance appeals. This is early work and may not be suitable for production. ## Training and evaluation data The syntehtic appeal dataset was used for training and evaluation. Given how the dataset was produced there is likely cross-contamination of the training and eval datasets so loss values are likely understated. This model is intended to match the Mistral-7B-Instruct style with ```[INST]Instructions[/INT]``` present (as well as system specific instructions within an extra ```<<```. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0506 | 0.0 | 1 | 2.4510 | | 0.8601 | 0.2 | 58 | 1.1493 | | 0.8635 | 0.4 | 116 | 1.1356 | | 0.869 | 0.61 | 174 | 1.1174 | | 0.7764 | 0.81 | 232 | 1.1173 | | 0.7803 | 1.01 | 290 | 1.1124 | | 0.6902 | 1.2 | 348 | 1.1570 | | 0.6774 | 1.4 | 406 | 1.1591 | | 0.6859 | 1.6 | 464 | 1.1651 | | 0.725 | 1.81 | 522 | 1.1677 | | 0.6525 | 2.01 | 580 | 1.1686 | | 0.5069 | 2.2 | 638 | 1.2688 | | 0.4702 | 2.4 | 696 | 1.2767 | | 0.4888 | 2.6 | 754 | 1.2852 | | 0.5197 | 2.8 | 812 | 1.2881 | | 0.4734 | 3.01 | 870 | 1.2851 | | 0.3586 | 3.2 | 928 | 1.3856 | | 0.3889 | 3.4 | 986 | 1.3929 | | 0.3526 | 3.6 | 1044 | 1.3959 | | 0.3832 | 3.8 | 1102 | 1.3954 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0