--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: deberta-base-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.6331818186325034 --- # deberta-base-finetuned-cola This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co./microsoft/deberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5812 - Matthews Correlation: 0.6332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4826 | 1.0 | 535 | 0.5277 | 0.5443 | | 0.28 | 2.0 | 1070 | 0.4723 | 0.6331 | | 0.1893 | 3.0 | 1605 | 0.5812 | 0.6332 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2