End of training
Browse files- README.md +77 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-multilingual-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- recall
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: multibert_testrun
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# multibert_testrun
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4300
|
22 |
+
- Precisions: 0.8488
|
23 |
+
- Recall: 0.7908
|
24 |
+
- F-measure: 0.8172
|
25 |
+
- Accuracy: 0.9404
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 7.5e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 14
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
|
56 |
+
| 0.4196 | 1.0 | 269 | 0.3190 | 0.8426 | 0.7090 | 0.7230 | 0.9078 |
|
57 |
+
| 0.2111 | 2.0 | 538 | 0.2981 | 0.7730 | 0.7491 | 0.7551 | 0.9190 |
|
58 |
+
| 0.1275 | 3.0 | 807 | 0.2666 | 0.8158 | 0.7744 | 0.7915 | 0.9346 |
|
59 |
+
| 0.0868 | 4.0 | 1076 | 0.2929 | 0.8276 | 0.7891 | 0.8050 | 0.9349 |
|
60 |
+
| 0.0608 | 5.0 | 1345 | 0.3253 | 0.8370 | 0.7803 | 0.8043 | 0.9353 |
|
61 |
+
| 0.0353 | 6.0 | 1614 | 0.3723 | 0.8153 | 0.7999 | 0.8051 | 0.9360 |
|
62 |
+
| 0.0254 | 7.0 | 1883 | 0.4149 | 0.8266 | 0.7688 | 0.7934 | 0.9339 |
|
63 |
+
| 0.0203 | 8.0 | 2152 | 0.4399 | 0.8356 | 0.7755 | 0.8028 | 0.9357 |
|
64 |
+
| 0.0146 | 9.0 | 2421 | 0.4413 | 0.8295 | 0.7845 | 0.8045 | 0.9349 |
|
65 |
+
| 0.0108 | 10.0 | 2690 | 0.4300 | 0.8488 | 0.7908 | 0.8172 | 0.9404 |
|
66 |
+
| 0.0054 | 11.0 | 2959 | 0.4428 | 0.8317 | 0.7858 | 0.8062 | 0.9357 |
|
67 |
+
| 0.004 | 12.0 | 3228 | 0.4681 | 0.8403 | 0.7861 | 0.8095 | 0.9375 |
|
68 |
+
| 0.0019 | 13.0 | 3497 | 0.4725 | 0.8409 | 0.7901 | 0.8123 | 0.9386 |
|
69 |
+
| 0.0013 | 14.0 | 3766 | 0.4839 | 0.8437 | 0.7895 | 0.8137 | 0.9404 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.34.0
|
75 |
+
- Pytorch 2.0.1+cu118
|
76 |
+
- Datasets 2.14.5
|
77 |
+
- Tokenizers 0.14.1
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 667152553
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74ff52ebf925fb3c952d8e380084b98cdfc41100757bbc22c6623bd01e7453ae
|
3 |
size 667152553
|