--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: multibert_seed37_1311 results: [] --- # multibert_seed37_1311 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co./bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3744 - Precisions: 0.8548 - Recall: 0.8200 - F-measure: 0.8358 - Accuracy: 0.9371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 37 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.4464 | 1.0 | 236 | 0.2769 | 0.8836 | 0.7193 | 0.7495 | 0.9197 | | 0.2278 | 2.0 | 472 | 0.2576 | 0.8850 | 0.7524 | 0.7965 | 0.9296 | | 0.1314 | 3.0 | 708 | 0.3066 | 0.8740 | 0.7725 | 0.8059 | 0.9284 | | 0.0964 | 4.0 | 944 | 0.3072 | 0.8267 | 0.7989 | 0.8054 | 0.9311 | | 0.0612 | 5.0 | 1180 | 0.3229 | 0.8601 | 0.8044 | 0.8297 | 0.9340 | | 0.0446 | 6.0 | 1416 | 0.3647 | 0.8433 | 0.7686 | 0.7952 | 0.9320 | | 0.0319 | 7.0 | 1652 | 0.3744 | 0.8548 | 0.8200 | 0.8358 | 0.9371 | | 0.0192 | 8.0 | 1888 | 0.4170 | 0.8724 | 0.7854 | 0.8176 | 0.9359 | | 0.0132 | 9.0 | 2124 | 0.3994 | 0.8723 | 0.7887 | 0.8178 | 0.9371 | | 0.0099 | 10.0 | 2360 | 0.4482 | 0.8750 | 0.8026 | 0.8327 | 0.9373 | | 0.005 | 11.0 | 2596 | 0.4510 | 0.8731 | 0.7887 | 0.8244 | 0.9371 | | 0.0024 | 12.0 | 2832 | 0.4455 | 0.8543 | 0.7969 | 0.8210 | 0.9373 | | 0.0016 | 13.0 | 3068 | 0.4603 | 0.8742 | 0.8062 | 0.8355 | 0.9395 | | 0.0018 | 14.0 | 3304 | 0.4660 | 0.8729 | 0.7996 | 0.8306 | 0.9393 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1