--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: multibert_seed36_1311 results: [] --- # multibert_seed36_1311 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co./bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4419 - Precisions: 0.8943 - Recall: 0.8153 - F-measure: 0.8493 - Accuracy: 0.9385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 36 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.4359 | 1.0 | 236 | 0.3021 | 0.8474 | 0.6948 | 0.7163 | 0.9077 | | 0.2293 | 2.0 | 472 | 0.2484 | 0.8612 | 0.7522 | 0.7842 | 0.9258 | | 0.1373 | 3.0 | 708 | 0.3033 | 0.7969 | 0.7892 | 0.7776 | 0.9250 | | 0.0881 | 4.0 | 944 | 0.3218 | 0.8153 | 0.8103 | 0.8094 | 0.9299 | | 0.0612 | 5.0 | 1180 | 0.3208 | 0.8357 | 0.8151 | 0.8225 | 0.9315 | | 0.0378 | 6.0 | 1416 | 0.3553 | 0.8919 | 0.8173 | 0.8493 | 0.9405 | | 0.0283 | 7.0 | 1652 | 0.4053 | 0.8575 | 0.8070 | 0.8270 | 0.9364 | | 0.0229 | 8.0 | 1888 | 0.3789 | 0.8639 | 0.8236 | 0.8398 | 0.9354 | | 0.0149 | 9.0 | 2124 | 0.4101 | 0.8856 | 0.8070 | 0.8387 | 0.9376 | | 0.0073 | 10.0 | 2360 | 0.4419 | 0.8943 | 0.8153 | 0.8493 | 0.9385 | | 0.0036 | 11.0 | 2596 | 0.4621 | 0.8882 | 0.8045 | 0.8392 | 0.9371 | | 0.0045 | 12.0 | 2832 | 0.4494 | 0.8913 | 0.8093 | 0.8440 | 0.9383 | | 0.0034 | 13.0 | 3068 | 0.4420 | 0.8795 | 0.8152 | 0.8422 | 0.9395 | | 0.0014 | 14.0 | 3304 | 0.4494 | 0.8838 | 0.8100 | 0.8404 | 0.9390 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1