--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: multibert_dataaugmentation results: [] --- # multibert_dataaugmentation This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co./bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7216 - Precisions: 0.8745 - Recall: 0.8029 - F-measure: 0.8291 - Accuracy: 0.9015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.5776 | 1.0 | 284 | 0.5209 | 0.7928 | 0.6866 | 0.7216 | 0.8385 | | 0.2774 | 2.0 | 568 | 0.4278 | 0.8274 | 0.7457 | 0.7626 | 0.8802 | | 0.1471 | 3.0 | 852 | 0.5814 | 0.8455 | 0.7114 | 0.7399 | 0.8627 | | 0.0933 | 4.0 | 1136 | 0.5386 | 0.8006 | 0.7300 | 0.7556 | 0.8835 | | 0.0631 | 5.0 | 1420 | 0.6197 | 0.8122 | 0.7445 | 0.7682 | 0.8846 | | 0.0437 | 6.0 | 1704 | 0.6973 | 0.8675 | 0.7423 | 0.7802 | 0.8815 | | 0.0274 | 7.0 | 1988 | 0.6409 | 0.7960 | 0.7586 | 0.7729 | 0.8895 | | 0.0202 | 8.0 | 2272 | 0.6477 | 0.8550 | 0.7712 | 0.8003 | 0.8922 | | 0.0136 | 9.0 | 2556 | 0.7231 | 0.8722 | 0.7765 | 0.8088 | 0.8919 | | 0.0094 | 10.0 | 2840 | 0.6787 | 0.8585 | 0.7916 | 0.8106 | 0.8955 | | 0.0064 | 11.0 | 3124 | 0.7215 | 0.8750 | 0.7819 | 0.8107 | 0.8974 | | 0.0052 | 12.0 | 3408 | 0.7295 | 0.8811 | 0.7840 | 0.8154 | 0.8985 | | 0.0038 | 13.0 | 3692 | 0.7216 | 0.8745 | 0.8029 | 0.8291 | 0.9015 | | 0.003 | 14.0 | 3976 | 0.7180 | 0.8745 | 0.8023 | 0.8289 | 0.9001 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1