nielsr HF staff commited on
Commit
5eac223
·
verified ·
1 Parent(s): 6da8f5a

Add model card for TokenSwift

Browse files

This PR adds a model card for the TokenSwift model. It includes the paper link, the GitHub repository, specifies the library name, and sets the pipeline tag for text generation. It also populates sections of the model card with descriptions and usage information derived from the paper and the repository README.

Files changed (1) hide show
  1. README.md +41 -151
README.md CHANGED
@@ -1,199 +1,89 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ pipeline_tag: text-generation
4
+ license: apache-2.0 # Please verify license
5
+ tags: [long-sequence-generation, lossless-acceleration]
6
  ---
7
 
8
+ # Model Card for TokenSwift
 
 
 
9
 
10
+ **TokenSwift** is a novel framework that achieves **lossless acceleration** for ultra-long sequence generation (up to 100K tokens), reducing computation time from hours to minutes.
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
+ TokenSwift is a framework designed to accelerate the generation of long sequences in large language models without sacrificing the quality of the output. It works as a plug-and-play solution with most Hugging Face models, providing a 3x speedup.
 
 
 
 
 
 
 
 
 
 
17
 
18
+ - **Developed by:** BigAI-NLCO
19
+ - **Model type:** Model Adapter Framework
20
+ - **Language(s) (NLP):** Multiple, depending on the underlying LLM
21
+ - **License:** Apache-2.0 # Please verify license
22
+ - **Finetuned from model [optional]:** Various Hugging Face LLMs (see Inference section)
23
 
24
+ ### Model Sources
25
 
26
+ - **Repository:** [https://github.com/bigai-nlco/TokenSwift](https://github.com/bigai-nlco/TokenSwift)
27
+ - **Paper:** [https://arxiv.org/abs/2502.18890](https://arxiv.org/abs/2502.18890)
 
28
 
29
  ## Uses
30
 
 
 
31
  ### Direct Use
32
 
33
+ TokenSwift is used as a framework to accelerate the inference of existing Hugging Face LLMs, particularly for long sequence generation.
 
 
34
 
35
+ ### Downstream Use
36
 
37
+ The accelerated LLMs can be used for any downstream task supported by the underlying base model.
 
 
38
 
39
  ### Out-of-Scope Use
40
 
41
+ TokenSwift is not designed for tasks that do not involve text generation or where short sequence lengths are sufficient.
 
 
42
 
43
  ## Bias, Risks, and Limitations
44
 
45
+ TokenSwift inherits the biases and limitations of the underlying language model it is used with.
 
 
46
 
47
  ### Recommendations
48
 
49
+ Users should be aware of the potential biases and limitations of the base language model used with TokenSwift.
 
 
50
 
51
  ## How to Get Started with the Model
52
 
53
+ See the [Inference](#inference) section of the GitHub README for usage instructions. Pre-trained TokenSwift adapters are available on the Hugging Face Hub.
 
 
54
 
55
  ## Training Details
56
 
57
  ### Training Data
58
 
59
+ The training data is derived from the PG-19 dataset. Data longer than 8K tokens are filtered out. Processed training datasets are available at:
60
 
61
+ - llama2-pg19: [https://huggingface.co/datasets/TokenSwift/llama2\_pg19\_train\_data](https://huggingface.co/datasets/TokenSwift/llama2_pg19_train_data)
62
+ - llama3.1-pg19: [https://huggingface.co/datasets/TokenSwift/llama3.1\_pg19\_train\_data](https://huggingface.co/datasets/TokenSwift/llama3.1_pg19_train_data)
63
+ - qwen2.5-pg19: [https://huggingface.co/datasets/TokenSwift/qwen2.5\_pg19\_train\_data](https://huggingface.co/datasets/TokenSwift/qwen2.5_pg19_train_data)
64
 
65
  ### Training Procedure
66
 
67
+ See the [Training Guide](#training-guide-option) section of the GitHub README for details.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  ## Evaluation
70
 
71
+ See the GitHub README for benchmark results.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
+ ## Citation
74
 
75
+ ```bibtex
76
+ @misc{wu2025hoursminuteslosslessacceleration,
77
+ title={From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens},
78
+ author={Tong Wu and Junzhe Shen and Zixia Jia and Yuxuan Wang and Zilong Zheng},
79
+ year={2025},
80
+ eprint={2502.18890},
81
+ archivePrefix={arXiv},
82
+ primaryClass={cs.CL},
83
+ url={https://arxiv.org/abs/2502.18890},
84
+ }
85
+ ```
86
 
87
+ ## Acknowledgment
88
 
89
+ This codebase is influenced by remarkable projects from the LLM community, including [Medusa](https://github.com/FasterDecoding/Medusa/tree/main) and [TriForce](https://github.com/Infini-AI-Lab/TriForce).