--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer model-index: - name: CS505-Classifier-T4_predictLabel_a1_v6 results: [] --- # CS505-Classifier-T4_predictLabel_a1_v6 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co./vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.98 | 48 | 0.6632 | | No log | 1.96 | 96 | 0.3136 | | No log | 2.94 | 144 | 0.2453 | | No log | 3.92 | 192 | 0.1673 | | No log | 4.9 | 240 | 0.1249 | | No log | 5.88 | 288 | 0.0850 | | No log | 6.86 | 336 | 0.0718 | | No log | 7.84 | 384 | 0.0576 | | No log | 8.82 | 432 | 0.0567 | | No log | 9.8 | 480 | 0.0530 | | 0.2878 | 10.78 | 528 | 0.0307 | | 0.2878 | 11.76 | 576 | 0.0376 | | 0.2878 | 12.73 | 624 | 0.0170 | | 0.2878 | 13.71 | 672 | 0.0195 | | 0.2878 | 14.69 | 720 | 0.0111 | | 0.2878 | 15.67 | 768 | 0.0131 | | 0.2878 | 16.65 | 816 | 0.0109 | | 0.2878 | 17.63 | 864 | 0.0073 | | 0.2878 | 18.61 | 912 | 0.0043 | | 0.2878 | 19.59 | 960 | 0.0032 | | 0.0238 | 20.57 | 1008 | 0.0067 | | 0.0238 | 21.55 | 1056 | 0.0027 | | 0.0238 | 22.53 | 1104 | 0.0025 | | 0.0238 | 23.51 | 1152 | 0.0025 | | 0.0238 | 24.49 | 1200 | 0.0022 | | 0.0238 | 25.47 | 1248 | 0.0022 | | 0.0238 | 26.45 | 1296 | 0.0021 | | 0.0238 | 27.43 | 1344 | 0.0020 | | 0.0238 | 28.41 | 1392 | 0.0019 | | 0.0238 | 29.39 | 1440 | 0.0019 | | 0.0238 | 30.37 | 1488 | 0.0018 | | 0.0036 | 31.35 | 1536 | 0.0018 | | 0.0036 | 32.33 | 1584 | 0.0018 | | 0.0036 | 33.31 | 1632 | 0.0017 | | 0.0036 | 34.29 | 1680 | 0.0017 | | 0.0036 | 35.27 | 1728 | 0.0016 | | 0.0036 | 36.24 | 1776 | 0.0017 | | 0.0036 | 37.22 | 1824 | 0.0016 | | 0.0036 | 38.2 | 1872 | 0.0016 | | 0.0036 | 39.18 | 1920 | 0.0015 | | 0.0036 | 40.16 | 1968 | 0.0015 | | 0.0022 | 41.14 | 2016 | 0.0015 | | 0.0022 | 42.12 | 2064 | 0.0015 | | 0.0022 | 43.1 | 2112 | 0.0015 | | 0.0022 | 44.08 | 2160 | 0.0015 | | 0.0022 | 45.06 | 2208 | 0.0015 | | 0.0022 | 46.04 | 2256 | 0.0015 | | 0.0022 | 47.02 | 2304 | 0.0015 | | 0.0022 | 48.0 | 2352 | 0.0015 | | 0.0022 | 48.98 | 2400 | 0.0014 | | 0.0022 | 49.96 | 2448 | 0.0014 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2