import streamlit as st import os from langchain.document_loaders.csv_loader import CSVLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.llms import CTransformers from langchain.chains import ConversationalRetrievalChain def add_vertical_space(spaces=1): for _ in range(spaces): st.sidebar.markdown("---") def main(): st.set_page_config(page_title="Llama-2-GGML CSV Chatbot") st.title("Llama-2-GGML CSV Chatbot") st.sidebar.title("About") st.sidebar.markdown(''' The Llama-2-GGML CSV Chatbot uses the **Llama-2-7B-Chat-GGML** model. ### 🔄Bot evolving, stay tuned! ## Useful Links 🔗 - **Model:** [Llama-2-7B-Chat-GGML](https://huggingface.co./TheBloke/Llama-2-7B-Chat-GGML/tree/main) 📚 - **GitHub:** [iam-baivab/Llama-2-GGML-CSV-Chatbot](https://github.com/iam-baivab/Llama-2-GGML-CSV-Chatbot) 💬 ''') DB_FAISS_PATH = "vectorstore/db_faiss" TEMP_DIR = "temp" if not os.path.exists(TEMP_DIR): os.makedirs(TEMP_DIR) uploaded_file = st.sidebar.file_uploader("Upload CSV file", type=['csv']) add_vertical_space(1) st.sidebar.write('Made by [@ThisIs-Developer](https://huggingface.co./ThisIs-Developer)') if uploaded_file is not None: file_path = os.path.join(TEMP_DIR, uploaded_file.name) with open(file_path, "wb") as f: f.write(uploaded_file.getvalue()) st.write(f"Uploaded file: {uploaded_file.name}") st.write("Processing CSV file...") loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={'delimiter': ','}) data = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20) text_chunks = text_splitter.split_documents(data) st.write(f"Total text chunks: {len(text_chunks)}") embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') docsearch = FAISS.from_documents(text_chunks, embeddings) docsearch.save_local(DB_FAISS_PATH) llm = CTransformers(model="models/llama-2-7b-chat.ggmlv3.q4_0.bin", model_type="llama", max_new_tokens=512, temperature=0.1) qa = ConversationalRetrievalChain.from_llm(llm, retriever=docsearch.as_retriever()) st.write("Enter your query:") query = st.text_input("Input Prompt:") if query: with st.spinner("Processing your question..."): chat_history = [] result = qa({"question": query, "chat_history": chat_history}) st.write("Response:", result['answer']) os.remove(file_path) if __name__ == "__main__": main()