Theoreticallyhugo
commited on
Commit
•
c2bd144
1
Parent(s):
5cca7b7
trainer: training complete at 2024-10-26 21:12:51.522480.
Browse files- README.md +29 -43
- meta_data/README_s42_e5.md +30 -28
- meta_data/meta_s42_e5_cvi0.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
---
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: allenai/longformer-base-4096
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
-
-
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
model-index:
|
@@ -14,15 +15,15 @@ model-index:
|
|
14 |
name: Token Classification
|
15 |
type: token-classification
|
16 |
dataset:
|
17 |
-
name:
|
18 |
-
type:
|
19 |
config: sep_tok_full_labels
|
20 |
split: train[0%:20%]
|
21 |
args: sep_tok_full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -30,19 +31,19 @@ should probably proofread and complete it, then remove this comment. -->
|
|
30 |
|
31 |
# longformer-sep_tok_full_labels
|
32 |
|
33 |
-
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B-claim: {'precision': 0.
|
37 |
-
- B-majorclaim: {'precision': 0.
|
38 |
-
- B-premise: {'precision': 0.
|
39 |
-
- I-claim: {'precision': 0.
|
40 |
-
- I-majorclaim: {'precision': 0.
|
41 |
-
- I-premise: {'precision': 0.
|
42 |
-
- O: {'precision': 0
|
43 |
-
- Accuracy: 0.
|
44 |
-
- Macro avg: {'precision': 0.
|
45 |
-
- Weighted avg: {'precision': 0.
|
46 |
|
47 |
## Model description
|
48 |
|
@@ -67,37 +68,22 @@ The following hyperparameters were used during training:
|
|
67 |
- seed: 42
|
68 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
69 |
- lr_scheduler_type: linear
|
70 |
-
- num_epochs:
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim
|
75 |
-
|
76 |
-
| No log | 1.0 |
|
77 |
-
| No log | 2.0 |
|
78 |
-
| No log | 3.0 |
|
79 |
-
| No log | 4.0 |
|
80 |
-
| No log | 5.0 |
|
81 |
-
| No log | 6.0 | 486 | 0.3353 | {'precision': 0.6330935251798561, 'recall': 0.6197183098591549, 'f1-score': 0.6263345195729537, 'support': 284.0} | {'precision': 0.9230769230769231, 'recall': 0.7659574468085106, 'f1-score': 0.8372093023255814, 'support': 141.0} | {'precision': 0.8594594594594595, 'recall': 0.8983050847457628, 'f1-score': 0.8784530386740332, 'support': 708.0} | {'precision': 0.6360499070878683, 'recall': 0.5876870247731175, 'f1-score': 0.6109127995920448, 'support': 4077.0} | {'precision': 0.9126662810873337, 'recall': 0.7796442687747036, 'f1-score': 0.8409272581934453, 'support': 2024.0} | {'precision': 0.8762685402029664, 'recall': 0.9176749509483323, 'f1-score': 0.8964938902643559, 'support': 12232.0} | {'precision': 0.9976971790443293, 'recall': 0.9997527608373167, 'f1-score': 0.9987239122380934, 'support': 12134.0} | 0.8940 | {'precision': 0.8340445450198194, 'recall': 0.7955342638209855, 'f1-score': 0.8127221029800725, 'support': 31600.0} | {'precision': 0.891880888702747, 'recall': 0.8939873417721519, 'f1-score': 0.8922477132246446, 'support': 31600.0} |
|
82 |
-
| 0.2608 | 7.0 | 567 | 0.4514 | {'precision': 0.6820512820512821, 'recall': 0.46830985915492956, 'f1-score': 0.5553235908141962, 'support': 284.0} | {'precision': 0.954954954954955, 'recall': 0.75177304964539, 'f1-score': 0.8412698412698413, 'support': 141.0} | {'precision': 0.8210399032648126, 'recall': 0.9590395480225988, 'f1-score': 0.8846905537459283, 'support': 708.0} | {'precision': 0.6880088823094005, 'recall': 0.45597252882021094, 'f1-score': 0.5484584747012834, 'support': 4077.0} | {'precision': 0.9536019536019537, 'recall': 0.7717391304347826, 'f1-score': 0.8530857454942655, 'support': 2024.0} | {'precision': 0.8438103411285132, 'recall': 0.9646010464355788, 'f1-score': 0.900171657448026, 'support': 12232.0} | {'precision': 0.9982707509881423, 'recall': 0.9990934564034943, 'f1-score': 0.9986819342614713, 'support': 12134.0} | 0.8943 | {'precision': 0.8488197240427228, 'recall': 0.7672183741309979, 'f1-score': 0.7973831139621446, 'support': 31600.0} | {'precision': 0.8885840321741321, 'recall': 0.8943354430379746, 'f1-score': 0.8858958517067363, 'support': 31600.0} |
|
83 |
-
| 0.2608 | 8.0 | 648 | 0.4097 | {'precision': 0.6814814814814815, 'recall': 0.647887323943662, 'f1-score': 0.6642599277978338, 'support': 284.0} | {'precision': 0.967479674796748, 'recall': 0.8439716312056738, 'f1-score': 0.9015151515151516, 'support': 141.0} | {'precision': 0.8687415426251691, 'recall': 0.9067796610169492, 'f1-score': 0.8873531444367657, 'support': 708.0} | {'precision': 0.6823907799517556, 'recall': 0.6244787834191807, 'f1-score': 0.6521516393442622, 'support': 4077.0} | {'precision': 0.9711649365628604, 'recall': 0.8320158102766798, 'f1-score': 0.8962213943587014, 'support': 2024.0} | {'precision': 0.8831269952503309, 'recall': 0.9272400261608895, 'f1-score': 0.9046460618145563, 'support': 12232.0} | {'precision': 0.996875, 'recall': 0.9990110433492665, 'f1-score': 0.9979418786531653, 'support': 12134.0} | 0.9063 | {'precision': 0.8644657729526208, 'recall': 0.8259120399103289, 'f1-score': 0.8434413139886338, 'support': 31600.0} | {'precision': 0.9047867115327305, 'recall': 0.9062974683544304, 'f1-score': 0.9047924430886448, 'support': 31600.0} |
|
84 |
-
| 0.2608 | 9.0 | 729 | 0.4417 | {'precision': 0.686411149825784, 'recall': 0.6936619718309859, 'f1-score': 0.6900175131348512, 'support': 284.0} | {'precision': 0.9197080291970803, 'recall': 0.8936170212765957, 'f1-score': 0.9064748201438848, 'support': 141.0} | {'precision': 0.8885754583921015, 'recall': 0.8898305084745762, 'f1-score': 0.8892025405786873, 'support': 708.0} | {'precision': 0.6771096513390601, 'recall': 0.657346087809664, 'f1-score': 0.6670815183571872, 'support': 4077.0} | {'precision': 0.9159268929503916, 'recall': 0.866600790513834, 'f1-score': 0.8905813658288906, 'support': 2024.0} | {'precision': 0.8978524893428779, 'recall': 0.9126062786134729, 'f1-score': 0.9051692681937971, 'support': 12232.0} | {'precision': 0.9976153276868679, 'recall': 0.9998351738915444, 'f1-score': 0.9987240172875077, 'support': 12134.0} | 0.9077 | {'precision': 0.8547427141048803, 'recall': 0.8447854046300962, 'f1-score': 0.849607291932115, 'support': 31600.0} | {'precision': 0.9068271879381139, 'recall': 0.9076582278481012, 'f1-score': 0.9071553503542205, 'support': 31600.0} |
|
85 |
-
| 0.2608 | 10.0 | 810 | 0.4593 | {'precision': 0.6834532374100719, 'recall': 0.6690140845070423, 'f1-score': 0.6761565836298933, 'support': 284.0} | {'precision': 0.9104477611940298, 'recall': 0.8652482269503546, 'f1-score': 0.8872727272727273, 'support': 141.0} | {'precision': 0.8821081830790569, 'recall': 0.8983050847457628, 'f1-score': 0.8901329601119664, 'support': 708.0} | {'precision': 0.6705637828007275, 'recall': 0.6330635271032622, 'f1-score': 0.6512742871561948, 'support': 4077.0} | {'precision': 0.9037947621592731, 'recall': 0.8354743083003953, 'f1-score': 0.8682926829268293, 'support': 2024.0} | {'precision': 0.8933428775948461, 'recall': 0.9182472204054938, 'f1-score': 0.905623866156017, 'support': 12232.0} | {'precision': 0.9965500246426812, 'recall': 0.9998351738915444, 'f1-score': 0.9981898963304262, 'support': 12134.0} | 0.9046 | {'precision': 0.8486086612686695, 'recall': 0.8313125179862652, 'f1-score': 0.8395632862262934, 'support': 31600.0} | {'precision': 0.9028380907030437, 'recall': 0.9045569620253164, 'f1-score': 0.9034697801243392, 'support': 31600.0} |
|
86 |
-
| 0.2608 | 11.0 | 891 | 0.5346 | {'precision': 0.7142857142857143, 'recall': 0.5809859154929577, 'f1-score': 0.6407766990291263, 'support': 284.0} | {'precision': 0.9130434782608695, 'recall': 0.8936170212765957, 'f1-score': 0.9032258064516129, 'support': 141.0} | {'precision': 0.8547120418848168, 'recall': 0.922316384180791, 'f1-score': 0.8872282608695653, 'support': 708.0} | {'precision': 0.7111412123264477, 'recall': 0.515084621044886, 'f1-score': 0.5974395448079659, 'support': 4077.0} | {'precision': 0.8927318295739348, 'recall': 0.8799407114624506, 'f1-score': 0.8862901219208758, 'support': 2024.0} | {'precision': 0.862670258943272, 'recall': 0.9423642903858731, 'f1-score': 0.9007579901539423, 'support': 12232.0} | {'precision': 0.9980258287406433, 'recall': 0.9999175869457723, 'f1-score': 0.9989708122349842, 'support': 12134.0} | 0.9014 | {'precision': 0.8495157662879569, 'recall': 0.8191752186841895, 'f1-score': 0.8306698907811532, 'support': 31600.0} | {'precision': 0.8957333024681017, 'recall': 0.9014240506329114, 'f1-score': 0.8957812921551218, 'support': 31600.0} |
|
87 |
-
| 0.2608 | 12.0 | 972 | 0.6067 | {'precision': 0.6622950819672131, 'recall': 0.7112676056338029, 'f1-score': 0.6859083191850596, 'support': 284.0} | {'precision': 0.9375, 'recall': 0.851063829787234, 'f1-score': 0.8921933085501859, 'support': 141.0} | {'precision': 0.8914285714285715, 'recall': 0.8813559322033898, 'f1-score': 0.8863636363636365, 'support': 708.0} | {'precision': 0.6508319266939957, 'recall': 0.6620063772381654, 'f1-score': 0.6563715953307394, 'support': 4077.0} | {'precision': 0.9370034052213394, 'recall': 0.8157114624505929, 'f1-score': 0.8721605916534602, 'support': 2024.0} | {'precision': 0.8954670108081949, 'recall': 0.907619359058208, 'f1-score': 0.9015022330491272, 'support': 12232.0} | {'precision': 0.9977796052631579, 'recall': 0.9999175869457723, 'f1-score': 0.9988474520457726, 'support': 12134.0} | 0.9029 | {'precision': 0.8531865144832105, 'recall': 0.8327060219024521, 'f1-score': 0.8419067337397116, 'support': 31600.0} | {'precision': 0.9038530884689406, 'recall': 0.902879746835443, 'f1-score': 0.9030573735174033, 'support': 31600.0} |
|
88 |
-
| 0.0322 | 13.0 | 1053 | 0.5914 | {'precision': 0.7125984251968503, 'recall': 0.6373239436619719, 'f1-score': 0.6728624535315986, 'support': 284.0} | {'precision': 0.9090909090909091, 'recall': 0.9219858156028369, 'f1-score': 0.9154929577464789, 'support': 141.0} | {'precision': 0.873641304347826, 'recall': 0.9081920903954802, 'f1-score': 0.8905817174515235, 'support': 708.0} | {'precision': 0.6932808546527973, 'recall': 0.6048565121412803, 'f1-score': 0.6460571129159025, 'support': 4077.0} | {'precision': 0.905688622754491, 'recall': 0.8967391304347826, 'f1-score': 0.9011916583912611, 'support': 2024.0} | {'precision': 0.8856001879257693, 'recall': 0.9246239372138653, 'f1-score': 0.9046914370275567, 'support': 12232.0} | {'precision': 0.9990935311083642, 'recall': 0.9991758694577221, 'f1-score': 0.9991346985866744, 'support': 12134.0} | 0.9072 | {'precision': 0.8541419764395725, 'recall': 0.8418424712725627, 'f1-score': 0.8471445765215709, 'support': 31600.0} | {'precision': 0.9039360771033997, 'recall': 0.907246835443038, 'f1-score': 0.9050120935479347, 'support': 31600.0} |
|
89 |
-
| 0.0322 | 14.0 | 1134 | 0.6610 | {'precision': 0.7283950617283951, 'recall': 0.6232394366197183, 'f1-score': 0.6717267552182163, 'support': 284.0} | {'precision': 0.927536231884058, 'recall': 0.9078014184397163, 'f1-score': 0.9175627240143368, 'support': 141.0} | {'precision': 0.8656914893617021, 'recall': 0.9194915254237288, 'f1-score': 0.8917808219178082, 'support': 708.0} | {'precision': 0.7092882991556092, 'recall': 0.5768947755702722, 'f1-score': 0.6362775598539159, 'support': 4077.0} | {'precision': 0.9176531137416366, 'recall': 0.8809288537549407, 'f1-score': 0.8989160574741618, 'support': 2024.0} | {'precision': 0.8762918165811835, 'recall': 0.9358240680183126, 'f1-score': 0.9050800553469064, 'support': 12232.0} | {'precision': 0.9989296006587073, 'recall': 0.9998351738915444, 'f1-score': 0.9993821821327072, 'support': 12134.0} | 0.9073 | {'precision': 0.8605408018730417, 'recall': 0.8348593216740333, 'f1-score': 0.8458180222797218, 'support': 31600.0} | {'precision': 0.9031477200436355, 'recall': 0.9072784810126582, 'f1-score': 0.9038759465613782, 'support': 31600.0} |
|
90 |
-
| 0.0322 | 15.0 | 1215 | 0.6557 | {'precision': 0.6868686868686869, 'recall': 0.7183098591549296, 'f1-score': 0.70223752151463, 'support': 284.0} | {'precision': 0.9197080291970803, 'recall': 0.8936170212765957, 'f1-score': 0.9064748201438848, 'support': 141.0} | {'precision': 0.8955650929899857, 'recall': 0.884180790960452, 'f1-score': 0.8898365316275765, 'support': 708.0} | {'precision': 0.6798825256975036, 'recall': 0.681383370125092, 'f1-score': 0.6806321205439176, 'support': 4077.0} | {'precision': 0.9241952232606438, 'recall': 0.8794466403162056, 'f1-score': 0.9012658227848102, 'support': 2024.0} | {'precision': 0.9036790384146837, 'recall': 0.9096631785480707, 'f1-score': 0.906661234467305, 'support': 12232.0} | {'precision': 0.9991764124526438, 'recall': 0.9998351738915444, 'f1-score': 0.9995056846267919, 'support': 12134.0} | 0.9105 | {'precision': 0.8584392869830325, 'recall': 0.8523480048961273, 'f1-score': 0.8552305336727023, 'support': 31600.0} | {'precision': 0.910730075973464, 'recall': 0.9105379746835442, 'f1-score': 0.9105896850690615, 'support': 31600.0} |
|
91 |
-
| 0.0322 | 16.0 | 1296 | 0.6791 | {'precision': 0.6896551724137931, 'recall': 0.6338028169014085, 'f1-score': 0.6605504587155964, 'support': 284.0} | {'precision': 0.9453125, 'recall': 0.8581560283687943, 'f1-score': 0.8996282527881041, 'support': 141.0} | {'precision': 0.8669354838709677, 'recall': 0.9110169491525424, 'f1-score': 0.8884297520661157, 'support': 708.0} | {'precision': 0.6769836803601575, 'recall': 0.5901398086828551, 'f1-score': 0.6305857685755472, 'support': 4077.0} | {'precision': 0.9421308815575987, 'recall': 0.8606719367588933, 'f1-score': 0.8995610637748515, 'support': 2024.0} | {'precision': 0.8771861940876026, 'recall': 0.9266677567037279, 'f1-score': 0.9012483104078874, 'support': 12232.0} | {'precision': 0.9991764124526438, 'recall': 0.9998351738915444, 'f1-score': 0.9995056846267919, 'support': 12134.0} | 0.9038 | {'precision': 0.8567686178203948, 'recall': 0.8257557814942523, 'f1-score': 0.8399298987078421, 'support': 31600.0} | {'precision': 0.9007476246179443, 'recall': 0.9038291139240506, 'f1-score': 0.9014915588643904, 'support': 31600.0} |
|
92 |
-
| 0.0322 | 17.0 | 1377 | 0.6997 | {'precision': 0.6735395189003437, 'recall': 0.6901408450704225, 'f1-score': 0.6817391304347826, 'support': 284.0} | {'precision': 0.952755905511811, 'recall': 0.8581560283687943, 'f1-score': 0.9029850746268657, 'support': 141.0} | {'precision': 0.8839160839160839, 'recall': 0.8926553672316384, 'f1-score': 0.8882642304989459, 'support': 708.0} | {'precision': 0.6603307825228338, 'recall': 0.6561196958547952, 'f1-score': 0.6582185039370079, 'support': 4077.0} | {'precision': 0.946725860155383, 'recall': 0.8428853754940712, 'f1-score': 0.8917929952953477, 'support': 2024.0} | {'precision': 0.8941922027915932, 'recall': 0.9112982341399608, 'f1-score': 0.902664183334683, 'support': 12232.0} | {'precision': 0.9986829107672045, 'recall': 0.9998351738915444, 'f1-score': 0.9992587101556709, 'support': 12134.0} | 0.9053 | {'precision': 0.8585918949378932, 'recall': 0.8358701028644611, 'f1-score': 0.8464175468976148, 'support': 31600.0} | {'precision': 0.905555556916252, 'recall': 0.9053481012658228, 'f1-score': 0.9052140894419886, 'support': 31600.0} |
|
93 |
-
| 0.0322 | 18.0 | 1458 | 0.7011 | {'precision': 0.6818181818181818, 'recall': 0.6866197183098591, 'f1-score': 0.6842105263157894, 'support': 284.0} | {'precision': 0.946969696969697, 'recall': 0.8865248226950354, 'f1-score': 0.9157509157509157, 'support': 141.0} | {'precision': 0.8825174825174825, 'recall': 0.8912429378531074, 'f1-score': 0.8868587491215741, 'support': 708.0} | {'precision': 0.6766766766766766, 'recall': 0.6632327691930341, 'f1-score': 0.6698872785829307, 'support': 4077.0} | {'precision': 0.9471698113207547, 'recall': 0.8680830039525692, 'f1-score': 0.9059035833977829, 'support': 2024.0} | {'precision': 0.8964162591196986, 'recall': 0.9140778286461739, 'f1-score': 0.9051608986035214, 'support': 12232.0} | {'precision': 0.9990941283043729, 'recall': 0.9998351738915444, 'f1-score': 0.9994645137372822, 'support': 12134.0} | 0.9090 | {'precision': 0.8615231766752662, 'recall': 0.8442308935059034, 'f1-score': 0.8524623522156853, 'support': 31600.0} | {'precision': 0.90872898138775, 'recall': 0.9090189873417721, 'f1-score': 0.9087165339227473, 'support': 31600.0} |
|
94 |
-
| 0.0055 | 19.0 | 1539 | 0.7171 | {'precision': 0.6834532374100719, 'recall': 0.6690140845070423, 'f1-score': 0.6761565836298933, 'support': 284.0} | {'precision': 0.9586776859504132, 'recall': 0.8226950354609929, 'f1-score': 0.8854961832061068, 'support': 141.0} | {'precision': 0.8760217983651226, 'recall': 0.9081920903954802, 'f1-score': 0.8918169209431346, 'support': 708.0} | {'precision': 0.6699947451392538, 'recall': 0.6254598969830758, 'f1-score': 0.6469618165672967, 'support': 4077.0} | {'precision': 0.9521889400921659, 'recall': 0.816699604743083, 'f1-score': 0.8792553191489363, 'support': 2024.0} | {'precision': 0.8853498200031303, 'recall': 0.9248691955526488, 'f1-score': 0.9046781287485005, 'support': 12232.0} | {'precision': 0.9987651271918992, 'recall': 0.9998351738915444, 'f1-score': 0.9992998640912648, 'support': 12134.0} | 0.9050 | {'precision': 0.8606359077360082, 'recall': 0.8238235830762669, 'f1-score': 0.8405235451907334, 'support': 31600.0} | {'precision': 0.9036997388825967, 'recall': 0.9049683544303797, 'f1-score': 0.9037054849825339, 'support': 31600.0} |
|
95 |
-
| 0.0055 | 20.0 | 1620 | 0.6997 | {'precision': 0.6735395189003437, 'recall': 0.6901408450704225, 'f1-score': 0.6817391304347826, 'support': 284.0} | {'precision': 0.9457364341085271, 'recall': 0.8652482269503546, 'f1-score': 0.9037037037037037, 'support': 141.0} | {'precision': 0.8835904628330996, 'recall': 0.8898305084745762, 'f1-score': 0.8866995073891626, 'support': 708.0} | {'precision': 0.6694601922602909, 'recall': 0.6661761098847192, 'f1-score': 0.6678141135972462, 'support': 4077.0} | {'precision': 0.9496166484118291, 'recall': 0.8567193675889329, 'f1-score': 0.9007792207792208, 'support': 2024.0} | {'precision': 0.896984318455971, 'recall': 0.9118705035971223, 'f1-score': 0.9043661572140916, 'support': 12232.0} | {'precision': 0.9986007078771916, 'recall': 0.9998351738915444, 'f1-score': 0.9992175596096035, 'support': 12134.0} | 0.9077 | {'precision': 0.8596468975496075, 'recall': 0.8399743907796676, 'f1-score': 0.8491884846754016, 'support': 31600.0} | {'precision': 0.9079291956085084, 'recall': 0.9077215189873418, 'f1-score': 0.9076388409441786, 'support': 31600.0} |
|
96 |
|
97 |
|
98 |
### Framework versions
|
99 |
|
100 |
-
- Transformers 4.
|
101 |
-
- Pytorch 2.
|
102 |
-
- Datasets 2.
|
103 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
base_model: allenai/longformer-base-4096
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
+
- stab-gurevych-essays
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
model-index:
|
|
|
15 |
name: Token Classification
|
16 |
type: token-classification
|
17 |
dataset:
|
18 |
+
name: stab-gurevych-essays
|
19 |
+
type: stab-gurevych-essays
|
20 |
config: sep_tok_full_labels
|
21 |
split: train[0%:20%]
|
22 |
args: sep_tok_full_labels
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.8874031749771744
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
# longformer-sep_tok_full_labels
|
33 |
|
34 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the stab-gurevych-essays dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.2775
|
37 |
+
- B-claim: {'precision': 0.6083333333333333, 'recall': 0.5140845070422535, 'f1-score': 0.5572519083969466, 'support': 284.0}
|
38 |
+
- B-majorclaim: {'precision': 0.88, 'recall': 0.624113475177305, 'f1-score': 0.7302904564315352, 'support': 141.0}
|
39 |
+
- B-premise: {'precision': 0.8373266078184111, 'recall': 0.9378531073446328, 'f1-score': 0.8847435043304464, 'support': 708.0}
|
40 |
+
- I-claim: {'precision': 0.6361367606688295, 'recall': 0.5500647388864911, 'f1-score': 0.5899780118041893, 'support': 4634.0}
|
41 |
+
- I-majorclaim: {'precision': 0.8413284132841329, 'recall': 0.793733681462141, 'f1-score': 0.8168383340797134, 'support': 2298.0}
|
42 |
+
- I-premise: {'precision': 0.8758342602892102, 'recall': 0.9255749026522665, 'f1-score': 0.9000178603322022, 'support': 13611.0}
|
43 |
+
- O: {'precision': 1.0, 'recall': 0.9986967500203633, 'f1-score': 0.999347950118184, 'support': 12277.0}
|
44 |
+
- Accuracy: 0.8874
|
45 |
+
- Macro avg: {'precision': 0.8112799107705595, 'recall': 0.7634458803693505, 'f1-score': 0.782638289356174, 'support': 33953.0}
|
46 |
+
- Weighted avg: {'precision': 0.8826579231427218, 'recall': 0.8874031749771744, 'f1-score': 0.8840991775809467, 'support': 33953.0}
|
47 |
|
48 |
## Model description
|
49 |
|
|
|
68 |
- seed: 42
|
69 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
70 |
- lr_scheduler_type: linear
|
71 |
+
- num_epochs: 5
|
72 |
|
73 |
### Training results
|
74 |
|
75 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
76 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:--------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
77 |
+
| No log | 1.0 | 41 | 0.4487 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 284.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.7102510460251046, 'recall': 0.9590395480225988, 'f1-score': 0.8161057692307693, 'support': 708.0} | {'precision': 0.5242566510172144, 'recall': 0.0722917565817868, 'f1-score': 0.1270623933244832, 'support': 4634.0} | {'precision': 0.635728952772074, 'recall': 0.6736292428198434, 'f1-score': 0.6541305725755335, 'support': 2298.0} | {'precision': 0.7685153090699018, 'recall': 0.9773712438468886, 'f1-score': 0.8604508262992788, 'support': 13611.0} | {'precision': 0.9707444699912788, 'recall': 0.9973120469169993, 'f1-score': 0.9838489353153878, 'support': 12277.0} | 0.8279 | {'precision': 0.5156423469822248, 'recall': 0.5256634054554452, 'f1-score': 0.49165692810649325, 'support': 33953.0} | {'precision': 0.7884799553707518, 'recall': 0.827879716078108, 'f1-score': 0.7793158674251499, 'support': 33953.0} |
|
78 |
+
| No log | 2.0 | 82 | 0.3651 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 284.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.6355475763016158, 'recall': 1.0, 'f1-score': 0.7771679473106476, 'support': 708.0} | {'precision': 0.5581831831831832, 'recall': 0.3208890807078118, 'f1-score': 0.40750890654973965, 'support': 4634.0} | {'precision': 0.888728323699422, 'recall': 0.5352480417754569, 'f1-score': 0.66811515480717, 'support': 2298.0} | {'precision': 0.8056312443233424, 'recall': 0.9775181838219088, 'f1-score': 0.8832901812387971, 'support': 13611.0} | {'precision': 0.9999184139675288, 'recall': 0.9982894844017268, 'f1-score': 0.9991032852368142, 'support': 12277.0} | 0.8537 | {'precision': 0.5554298202107274, 'recall': 0.5474206843867007, 'f1-score': 0.5335979250204527, 'support': 33953.0} | {'precision': 0.8341039518604557, 'recall': 0.8537095396577622, 'f1-score': 0.832398123732452, 'support': 33953.0} |
|
79 |
+
| No log | 3.0 | 123 | 0.2896 | {'precision': 0.47393364928909953, 'recall': 0.352112676056338, 'f1-score': 0.40404040404040403, 'support': 284.0} | {'precision': 0.9333333333333333, 'recall': 0.2978723404255319, 'f1-score': 0.45161290322580644, 'support': 141.0} | {'precision': 0.7856328392246295, 'recall': 0.9731638418079096, 'f1-score': 0.8694006309148264, 'support': 708.0} | {'precision': 0.6642079381805409, 'recall': 0.4080707811825637, 'f1-score': 0.5055473867130063, 'support': 4634.0} | {'precision': 0.7170077628793226, 'recall': 0.8842471714534378, 'f1-score': 0.7918939984411536, 'support': 2298.0} | {'precision': 0.8606260075228371, 'recall': 0.9413709499669385, 'f1-score': 0.8991894452436927, 'support': 13611.0} | {'precision': 1.0, 'recall': 0.9978822187830904, 'f1-score': 0.9989399869536856, 'support': 12277.0} | 0.8782 | {'precision': 0.7763916472042519, 'recall': 0.6935314256679729, 'f1-score': 0.7029463936475108, 'support': 33953.0} | {'precision': 0.8699976208166521, 'recall': 0.8782140017082437, 'f1-score': 0.867649200314498, 'support': 33953.0} |
|
80 |
+
| No log | 4.0 | 164 | 0.2798 | {'precision': 0.5757575757575758, 'recall': 0.5352112676056338, 'f1-score': 0.5547445255474452, 'support': 284.0} | {'precision': 0.9054054054054054, 'recall': 0.475177304964539, 'f1-score': 0.6232558139534884, 'support': 141.0} | {'precision': 0.8377358490566038, 'recall': 0.940677966101695, 'f1-score': 0.8862275449101796, 'support': 708.0} | {'precision': 0.6079838528818121, 'recall': 0.5850237375917134, 'f1-score': 0.596282854943363, 'support': 4634.0} | {'precision': 0.8411037107516651, 'recall': 0.7693646649260226, 'f1-score': 0.8036363636363636, 'support': 2298.0} | {'precision': 0.8822353864820498, 'recall': 0.9081625156123724, 'f1-score': 0.8950112229382376, 'support': 13611.0} | {'precision': 1.0, 'recall': 0.9976378594119084, 'f1-score': 0.9988175331294598, 'support': 12277.0} | 0.8828 | {'precision': 0.8071745400478731, 'recall': 0.7444650451734122, 'f1-score': 0.7654251227226482, 'support': 33953.0} | {'precision': 0.881207953399647, 'recall': 0.882779135864283, 'f1-score': 0.8814327847290655, 'support': 33953.0} |
|
81 |
+
| No log | 5.0 | 205 | 0.2775 | {'precision': 0.6083333333333333, 'recall': 0.5140845070422535, 'f1-score': 0.5572519083969466, 'support': 284.0} | {'precision': 0.88, 'recall': 0.624113475177305, 'f1-score': 0.7302904564315352, 'support': 141.0} | {'precision': 0.8373266078184111, 'recall': 0.9378531073446328, 'f1-score': 0.8847435043304464, 'support': 708.0} | {'precision': 0.6361367606688295, 'recall': 0.5500647388864911, 'f1-score': 0.5899780118041893, 'support': 4634.0} | {'precision': 0.8413284132841329, 'recall': 0.793733681462141, 'f1-score': 0.8168383340797134, 'support': 2298.0} | {'precision': 0.8758342602892102, 'recall': 0.9255749026522665, 'f1-score': 0.9000178603322022, 'support': 13611.0} | {'precision': 1.0, 'recall': 0.9986967500203633, 'f1-score': 0.999347950118184, 'support': 12277.0} | 0.8874 | {'precision': 0.8112799107705595, 'recall': 0.7634458803693505, 'f1-score': 0.782638289356174, 'support': 33953.0} | {'precision': 0.8826579231427218, 'recall': 0.8874031749771744, 'f1-score': 0.8840991775809467, 'support': 33953.0} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
### Framework versions
|
85 |
|
86 |
+
- Transformers 4.45.2
|
87 |
+
- Pytorch 2.5.0+cu124
|
88 |
+
- Datasets 2.19.1
|
89 |
+
- Tokenizers 0.20.1
|
meta_data/README_s42_e5.md
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
---
|
|
|
|
|
2 |
base_model: allenai/longformer-base-4096
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
-
-
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
model-index:
|
@@ -13,15 +15,15 @@ model-index:
|
|
13 |
name: Token Classification
|
14 |
type: token-classification
|
15 |
dataset:
|
16 |
-
name:
|
17 |
-
type:
|
18 |
config: sep_tok_full_labels
|
19 |
-
split: train[
|
20 |
args: sep_tok_full_labels
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -29,19 +31,19 @@ should probably proofread and complete it, then remove this comment. -->
|
|
29 |
|
30 |
# longformer-sep_tok_full_labels
|
31 |
|
32 |
-
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- B-claim: {'precision': 0.
|
36 |
-
- B-majorclaim: {'precision': 0.
|
37 |
-
- B-premise: {'precision': 0.
|
38 |
-
- I-claim: {'precision': 0.
|
39 |
-
- I-majorclaim: {'precision': 0.
|
40 |
-
- I-premise: {'precision': 0.
|
41 |
-
- O: {'precision': 1.0, 'recall': 0.
|
42 |
-
- Accuracy: 0.
|
43 |
-
- Macro avg: {'precision': 0.
|
44 |
-
- Weighted avg: {'precision': 0.
|
45 |
|
46 |
## Model description
|
47 |
|
@@ -70,18 +72,18 @@ The following hyperparameters were used during training:
|
|
70 |
|
71 |
### Training results
|
72 |
|
73 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
74 |
-
|
75 |
-
| No log | 1.0 | 41 | 0.
|
76 |
-
| No log | 2.0 | 82 | 0.
|
77 |
-
| No log | 3.0 | 123 | 0.
|
78 |
-
| No log | 4.0 | 164 | 0.
|
79 |
-
| No log | 5.0 | 205 | 0.
|
80 |
|
81 |
|
82 |
### Framework versions
|
83 |
|
84 |
-
- Transformers 4.
|
85 |
-
- Pytorch 2.
|
86 |
-
- Datasets 2.
|
87 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
base_model: allenai/longformer-base-4096
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
+
- stab-gurevych-essays
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
model-index:
|
|
|
15 |
name: Token Classification
|
16 |
type: token-classification
|
17 |
dataset:
|
18 |
+
name: stab-gurevych-essays
|
19 |
+
type: stab-gurevych-essays
|
20 |
config: sep_tok_full_labels
|
21 |
+
split: train[0%:20%]
|
22 |
args: sep_tok_full_labels
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.8874031749771744
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
# longformer-sep_tok_full_labels
|
33 |
|
34 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the stab-gurevych-essays dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.2775
|
37 |
+
- B-claim: {'precision': 0.6083333333333333, 'recall': 0.5140845070422535, 'f1-score': 0.5572519083969466, 'support': 284.0}
|
38 |
+
- B-majorclaim: {'precision': 0.88, 'recall': 0.624113475177305, 'f1-score': 0.7302904564315352, 'support': 141.0}
|
39 |
+
- B-premise: {'precision': 0.8373266078184111, 'recall': 0.9378531073446328, 'f1-score': 0.8847435043304464, 'support': 708.0}
|
40 |
+
- I-claim: {'precision': 0.6361367606688295, 'recall': 0.5500647388864911, 'f1-score': 0.5899780118041893, 'support': 4634.0}
|
41 |
+
- I-majorclaim: {'precision': 0.8413284132841329, 'recall': 0.793733681462141, 'f1-score': 0.8168383340797134, 'support': 2298.0}
|
42 |
+
- I-premise: {'precision': 0.8758342602892102, 'recall': 0.9255749026522665, 'f1-score': 0.9000178603322022, 'support': 13611.0}
|
43 |
+
- O: {'precision': 1.0, 'recall': 0.9986967500203633, 'f1-score': 0.999347950118184, 'support': 12277.0}
|
44 |
+
- Accuracy: 0.8874
|
45 |
+
- Macro avg: {'precision': 0.8112799107705595, 'recall': 0.7634458803693505, 'f1-score': 0.782638289356174, 'support': 33953.0}
|
46 |
+
- Weighted avg: {'precision': 0.8826579231427218, 'recall': 0.8874031749771744, 'f1-score': 0.8840991775809467, 'support': 33953.0}
|
47 |
|
48 |
## Model description
|
49 |
|
|
|
72 |
|
73 |
### Training results
|
74 |
|
75 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
76 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:--------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
77 |
+
| No log | 1.0 | 41 | 0.4487 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 284.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.7102510460251046, 'recall': 0.9590395480225988, 'f1-score': 0.8161057692307693, 'support': 708.0} | {'precision': 0.5242566510172144, 'recall': 0.0722917565817868, 'f1-score': 0.1270623933244832, 'support': 4634.0} | {'precision': 0.635728952772074, 'recall': 0.6736292428198434, 'f1-score': 0.6541305725755335, 'support': 2298.0} | {'precision': 0.7685153090699018, 'recall': 0.9773712438468886, 'f1-score': 0.8604508262992788, 'support': 13611.0} | {'precision': 0.9707444699912788, 'recall': 0.9973120469169993, 'f1-score': 0.9838489353153878, 'support': 12277.0} | 0.8279 | {'precision': 0.5156423469822248, 'recall': 0.5256634054554452, 'f1-score': 0.49165692810649325, 'support': 33953.0} | {'precision': 0.7884799553707518, 'recall': 0.827879716078108, 'f1-score': 0.7793158674251499, 'support': 33953.0} |
|
78 |
+
| No log | 2.0 | 82 | 0.3651 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 284.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.6355475763016158, 'recall': 1.0, 'f1-score': 0.7771679473106476, 'support': 708.0} | {'precision': 0.5581831831831832, 'recall': 0.3208890807078118, 'f1-score': 0.40750890654973965, 'support': 4634.0} | {'precision': 0.888728323699422, 'recall': 0.5352480417754569, 'f1-score': 0.66811515480717, 'support': 2298.0} | {'precision': 0.8056312443233424, 'recall': 0.9775181838219088, 'f1-score': 0.8832901812387971, 'support': 13611.0} | {'precision': 0.9999184139675288, 'recall': 0.9982894844017268, 'f1-score': 0.9991032852368142, 'support': 12277.0} | 0.8537 | {'precision': 0.5554298202107274, 'recall': 0.5474206843867007, 'f1-score': 0.5335979250204527, 'support': 33953.0} | {'precision': 0.8341039518604557, 'recall': 0.8537095396577622, 'f1-score': 0.832398123732452, 'support': 33953.0} |
|
79 |
+
| No log | 3.0 | 123 | 0.2896 | {'precision': 0.47393364928909953, 'recall': 0.352112676056338, 'f1-score': 0.40404040404040403, 'support': 284.0} | {'precision': 0.9333333333333333, 'recall': 0.2978723404255319, 'f1-score': 0.45161290322580644, 'support': 141.0} | {'precision': 0.7856328392246295, 'recall': 0.9731638418079096, 'f1-score': 0.8694006309148264, 'support': 708.0} | {'precision': 0.6642079381805409, 'recall': 0.4080707811825637, 'f1-score': 0.5055473867130063, 'support': 4634.0} | {'precision': 0.7170077628793226, 'recall': 0.8842471714534378, 'f1-score': 0.7918939984411536, 'support': 2298.0} | {'precision': 0.8606260075228371, 'recall': 0.9413709499669385, 'f1-score': 0.8991894452436927, 'support': 13611.0} | {'precision': 1.0, 'recall': 0.9978822187830904, 'f1-score': 0.9989399869536856, 'support': 12277.0} | 0.8782 | {'precision': 0.7763916472042519, 'recall': 0.6935314256679729, 'f1-score': 0.7029463936475108, 'support': 33953.0} | {'precision': 0.8699976208166521, 'recall': 0.8782140017082437, 'f1-score': 0.867649200314498, 'support': 33953.0} |
|
80 |
+
| No log | 4.0 | 164 | 0.2798 | {'precision': 0.5757575757575758, 'recall': 0.5352112676056338, 'f1-score': 0.5547445255474452, 'support': 284.0} | {'precision': 0.9054054054054054, 'recall': 0.475177304964539, 'f1-score': 0.6232558139534884, 'support': 141.0} | {'precision': 0.8377358490566038, 'recall': 0.940677966101695, 'f1-score': 0.8862275449101796, 'support': 708.0} | {'precision': 0.6079838528818121, 'recall': 0.5850237375917134, 'f1-score': 0.596282854943363, 'support': 4634.0} | {'precision': 0.8411037107516651, 'recall': 0.7693646649260226, 'f1-score': 0.8036363636363636, 'support': 2298.0} | {'precision': 0.8822353864820498, 'recall': 0.9081625156123724, 'f1-score': 0.8950112229382376, 'support': 13611.0} | {'precision': 1.0, 'recall': 0.9976378594119084, 'f1-score': 0.9988175331294598, 'support': 12277.0} | 0.8828 | {'precision': 0.8071745400478731, 'recall': 0.7444650451734122, 'f1-score': 0.7654251227226482, 'support': 33953.0} | {'precision': 0.881207953399647, 'recall': 0.882779135864283, 'f1-score': 0.8814327847290655, 'support': 33953.0} |
|
81 |
+
| No log | 5.0 | 205 | 0.2775 | {'precision': 0.6083333333333333, 'recall': 0.5140845070422535, 'f1-score': 0.5572519083969466, 'support': 284.0} | {'precision': 0.88, 'recall': 0.624113475177305, 'f1-score': 0.7302904564315352, 'support': 141.0} | {'precision': 0.8373266078184111, 'recall': 0.9378531073446328, 'f1-score': 0.8847435043304464, 'support': 708.0} | {'precision': 0.6361367606688295, 'recall': 0.5500647388864911, 'f1-score': 0.5899780118041893, 'support': 4634.0} | {'precision': 0.8413284132841329, 'recall': 0.793733681462141, 'f1-score': 0.8168383340797134, 'support': 2298.0} | {'precision': 0.8758342602892102, 'recall': 0.9255749026522665, 'f1-score': 0.9000178603322022, 'support': 13611.0} | {'precision': 1.0, 'recall': 0.9986967500203633, 'f1-score': 0.999347950118184, 'support': 12277.0} | 0.8874 | {'precision': 0.8112799107705595, 'recall': 0.7634458803693505, 'f1-score': 0.782638289356174, 'support': 33953.0} | {'precision': 0.8826579231427218, 'recall': 0.8874031749771744, 'f1-score': 0.8840991775809467, 'support': 33953.0} |
|
82 |
|
83 |
|
84 |
### Framework versions
|
85 |
|
86 |
+
- Transformers 4.45.2
|
87 |
+
- Pytorch 2.5.0+cu124
|
88 |
+
- Datasets 2.19.1
|
89 |
+
- Tokenizers 0.20.1
|
meta_data/meta_s42_e5_cvi0.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"B-Claim": {"precision": 0.
|
|
|
1 |
+
{"B-Claim": {"precision": 0.6083333333333333, "recall": 0.5140845070422535, "f1-score": 0.5572519083969466, "support": 284.0}, "B-MajorClaim": {"precision": 0.88, "recall": 0.624113475177305, "f1-score": 0.7302904564315352, "support": 141.0}, "B-Premise": {"precision": 0.8373266078184111, "recall": 0.9378531073446328, "f1-score": 0.8847435043304464, "support": 708.0}, "I-Claim": {"precision": 0.6361367606688295, "recall": 0.5500647388864911, "f1-score": 0.5899780118041893, "support": 4634.0}, "I-MajorClaim": {"precision": 0.8413284132841329, "recall": 0.793733681462141, "f1-score": 0.8168383340797134, "support": 2298.0}, "I-Premise": {"precision": 0.8758342602892102, "recall": 0.9255749026522665, "f1-score": 0.9000178603322022, "support": 13611.0}, "O": {"precision": 1.0, "recall": 0.9986967500203633, "f1-score": 0.999347950118184, "support": 12277.0}, "accuracy": 0.8874031749771744, "macro avg": {"precision": 0.8112799107705595, "recall": 0.7634458803693505, "f1-score": 0.782638289356174, "support": 33953.0}, "weighted avg": {"precision": 0.8826579231427218, "recall": 0.8874031749771744, "f1-score": 0.8840991775809467, "support": 33953.0}}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592330980
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26b7d85a9aceefccf48dcff74fe9ffbdc3b0b6a05d9be18b1bc4de9ca5d2e95e
|
3 |
size 592330980
|