Theoreticallyhugo
commited on
Commit
•
a6e0b39
1
Parent(s):
ff047d5
trainer: training complete at 2024-03-02 15:57:21.877070.
Browse files- README.md +31 -31
- meta_data/README_s42_e16.md +31 -31
- meta_data/meta_s42_e16_cvi3.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -17,12 +17,12 @@ model-index:
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: sep_tok_full_labels
|
20 |
-
split: train[
|
21 |
args: sep_tok_full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,17 +32,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B-claim: {'precision': 0.
|
37 |
-
- B-majorclaim: {'precision': 0.
|
38 |
-
- B-premise: {'precision': 0.
|
39 |
-
- I-claim: {'precision': 0.
|
40 |
-
- I-majorclaim: {'precision': 0.
|
41 |
-
- I-premise: {'precision': 0.
|
42 |
-
- O: {'precision': 0.
|
43 |
-
- Accuracy: 0.
|
44 |
-
- Macro avg: {'precision': 0.
|
45 |
-
- Weighted avg: {'precision': 0.
|
46 |
|
47 |
## Model description
|
48 |
|
@@ -71,24 +71,24 @@ The following hyperparameters were used during training:
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
75 |
-
|
76 |
-
| No log | 1.0 | 41 | 0.
|
77 |
-
| No log | 2.0 | 82 | 0.
|
78 |
-
| No log | 3.0 | 123 | 0.
|
79 |
-
| No log | 4.0 | 164 | 0.
|
80 |
-
| No log | 5.0 | 205 | 0.
|
81 |
-
| No log | 6.0 | 246 | 0.
|
82 |
-
| No log | 7.0 | 287 | 0.
|
83 |
-
| No log | 8.0 | 328 | 0.
|
84 |
-
| No log | 9.0 | 369 | 0.
|
85 |
-
| No log | 10.0 | 410 | 0.
|
86 |
-
| No log | 11.0 | 451 | 0.
|
87 |
-
| No log | 12.0 | 492 | 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: sep_tok_full_labels
|
20 |
+
split: train[60%:80%]
|
21 |
args: sep_tok_full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9161077515118197
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4671
|
36 |
+
- B-claim: {'precision': 0.7346278317152104, 'recall': 0.6696165191740413, 'f1-score': 0.7006172839506173, 'support': 339.0}
|
37 |
+
- B-majorclaim: {'precision': 0.9490445859872612, 'recall': 0.93125, 'f1-score': 0.9400630914826499, 'support': 160.0}
|
38 |
+
- B-premise: {'precision': 0.8921971252566735, 'recall': 0.9234856535600425, 'f1-score': 0.9075718015665796, 'support': 941.0}
|
39 |
+
- I-claim: {'precision': 0.7273820981713186, 'recall': 0.6434653043848446, 'f1-score': 0.6828552066862436, 'support': 4698.0}
|
40 |
+
- I-majorclaim: {'precision': 0.9140926640926641, 'recall': 0.9339250493096647, 'f1-score': 0.9239024390243903, 'support': 2028.0}
|
41 |
+
- I-premise: {'precision': 0.9001753588361369, 'recall': 0.9326424870466321, 'f1-score': 0.9161213563355145, 'support': 14861.0}
|
42 |
+
- O: {'precision': 0.999324070597071, 'recall': 0.9964801917172171, 'f1-score': 0.9979001049947502, 'support': 13353.0}
|
43 |
+
- Accuracy: 0.9161
|
44 |
+
- Macro avg: {'precision': 0.8738348192366193, 'recall': 0.8615521721703489, 'f1-score': 0.8670044691486779, 'support': 36380.0}
|
45 |
+
- Weighted avg: {'precision': 0.9134949094533051, 'recall': 0.9161077515118197, 'f1-score': 0.914324131528891, 'support': 36380.0}
|
46 |
|
47 |
## Model description
|
48 |
|
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
75 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
76 |
+
| No log | 1.0 | 41 | 0.4724 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 339.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 160.0} | {'precision': 0.8, 'recall': 0.7863974495217854, 'f1-score': 0.7931404072883173, 'support': 941.0} | {'precision': 0.46561443066516345, 'recall': 0.35163899531715626, 'f1-score': 0.40067911714770804, 'support': 4698.0} | {'precision': 0.4144271570014144, 'recall': 0.8668639053254438, 'f1-score': 0.5607655502392344, 'support': 2028.0} | {'precision': 0.8844441252513645, 'recall': 0.8286790929277976, 'f1-score': 0.8556539864512767, 'support': 14861.0} | {'precision': 0.9700167382286587, 'recall': 0.9982026510896428, 'f1-score': 0.9839078762825717, 'support': 13353.0} | 0.8190 | {'precision': 0.5049289215923716, 'recall': 0.5473974420259752, 'f1-score': 0.5134495624870155, 'support': 36380.0} | {'precision': 0.8212499318469384, 'recall': 0.8189664650907091, 'f1-score': 0.8141826255128369, 'support': 36380.0} |
|
77 |
+
| No log | 2.0 | 82 | 0.2806 | {'precision': 0.39147286821705424, 'recall': 0.29793510324483774, 'f1-score': 0.33835845896147404, 'support': 339.0} | {'precision': 1.0, 'recall': 0.0125, 'f1-score': 0.02469135802469136, 'support': 160.0} | {'precision': 0.788975021533161, 'recall': 0.973432518597237, 'f1-score': 0.8715509039010466, 'support': 941.0} | {'precision': 0.6001651073197578, 'recall': 0.46424010217113665, 'f1-score': 0.5235237638022083, 'support': 4698.0} | {'precision': 0.890087660148348, 'recall': 0.650887573964497, 'f1-score': 0.7519225291939617, 'support': 2028.0} | {'precision': 0.8537944400702562, 'recall': 0.9485902698337931, 'f1-score': 0.8986994772408516, 'support': 14861.0} | {'precision': 0.9998499737454054, 'recall': 0.9982026510896428, 'f1-score': 0.9990256333383302, 'support': 13353.0} | 0.8781 | {'precision': 0.7891921530048547, 'recall': 0.6208268884144491, 'f1-score': 0.6296817320660805, 'support': 36380.0} | {'precision': 0.871331614069924, 'recall': 0.8781198460692689, 'f1-score': 0.8691247740581066, 'support': 36380.0} |
|
78 |
+
| No log | 3.0 | 123 | 0.2463 | {'precision': 0.705, 'recall': 0.415929203539823, 'f1-score': 0.523191094619666, 'support': 339.0} | {'precision': 0.9416058394160584, 'recall': 0.80625, 'f1-score': 0.8686868686868686, 'support': 160.0} | {'precision': 0.8233695652173914, 'recall': 0.9659936238044633, 'f1-score': 0.888997555012225, 'support': 941.0} | {'precision': 0.6939824614454189, 'recall': 0.4885057471264368, 'f1-score': 0.5733916302311056, 'support': 4698.0} | {'precision': 0.900974858902001, 'recall': 0.8658777120315582, 'f1-score': 0.883077696756349, 'support': 2028.0} | {'precision': 0.862554311241662, 'recall': 0.9484556893883319, 'f1-score': 0.9034677264277932, 'support': 14861.0} | {'precision': 0.9997751461549993, 'recall': 0.9989515464689583, 'f1-score': 0.9993631766248362, 'support': 13353.0} | 0.8979 | {'precision': 0.8467517403396473, 'recall': 0.7842805031942245, 'f1-score': 0.8057393926226919, 'support': 36380.0} | {'precision': 0.8911590560437058, 'recall': 0.8978559648158329, 'f1-score': 0.8908329908492291, 'support': 36380.0} |
|
79 |
+
| No log | 4.0 | 164 | 0.2455 | {'precision': 0.7248908296943232, 'recall': 0.4896755162241888, 'f1-score': 0.5845070422535211, 'support': 339.0} | {'precision': 0.9424460431654677, 'recall': 0.81875, 'f1-score': 0.8762541806020067, 'support': 160.0} | {'precision': 0.8409302325581396, 'recall': 0.9606801275239107, 'f1-score': 0.8968253968253969, 'support': 941.0} | {'precision': 0.7380442541042113, 'recall': 0.44018731375053216, 'f1-score': 0.5514666666666667, 'support': 4698.0} | {'precision': 0.8909090909090909, 'recall': 0.8939842209072978, 'f1-score': 0.8924440068914595, 'support': 2028.0} | {'precision': 0.8539305737802696, 'recall': 0.9633941188345333, 'f1-score': 0.9053656685743194, 'support': 14861.0} | {'precision': 0.999850007499625, 'recall': 0.9984273197034375, 'f1-score': 0.9991381571551693, 'support': 13353.0} | 0.8997 | {'precision': 0.8558572902444468, 'recall': 0.7950140881348429, 'f1-score': 0.8151430169955056, 'support': 36380.0} | {'precision': 0.8934359443718076, 'recall': 0.8996976360637713, 'f1-score': 0.8900236150023304, 'support': 36380.0} |
|
80 |
+
| No log | 5.0 | 205 | 0.2526 | {'precision': 0.7388059701492538, 'recall': 0.584070796460177, 'f1-score': 0.6523887973640857, 'support': 339.0} | {'precision': 0.9315068493150684, 'recall': 0.85, 'f1-score': 0.888888888888889, 'support': 160.0} | {'precision': 0.8685491723466408, 'recall': 0.9479277364505845, 'f1-score': 0.9065040650406505, 'support': 941.0} | {'precision': 0.7125307125307125, 'recall': 0.6172839506172839, 'f1-score': 0.6614963503649636, 'support': 4698.0} | {'precision': 0.8987531172069826, 'recall': 0.888560157790927, 'f1-score': 0.8936275725266551, 'support': 2028.0} | {'precision': 0.8955877616747182, 'recall': 0.9356032568467801, 'f1-score': 0.9151582965839531, 'support': 14861.0} | {'precision': 0.9991003823375065, 'recall': 0.9980528720137797, 'f1-score': 0.9985763524651581, 'support': 13353.0} | 0.9115 | {'precision': 0.8635477093658405, 'recall': 0.8316426814542189, 'f1-score': 0.8452343318906221, 'support': 36380.0} | {'precision': 0.9081159656876019, 'recall': 0.9114623419461243, 'f1-score': 0.9090309620899378, 'support': 36380.0} |
|
81 |
+
| No log | 6.0 | 246 | 0.2673 | {'precision': 0.7210031347962382, 'recall': 0.6784660766961652, 'f1-score': 0.6990881458966565, 'support': 339.0} | {'precision': 0.9192546583850931, 'recall': 0.925, 'f1-score': 0.9221183800623053, 'support': 160.0} | {'precision': 0.8932642487046633, 'recall': 0.9160467587672688, 'f1-score': 0.9045120671563485, 'support': 941.0} | {'precision': 0.7050987597611392, 'recall': 0.6534695615155385, 'f1-score': 0.6783031374281926, 'support': 4698.0} | {'precision': 0.8852927177534508, 'recall': 0.9171597633136095, 'f1-score': 0.9009445386292081, 'support': 2028.0} | {'precision': 0.904881101376721, 'recall': 0.9243657896507638, 'f1-score': 0.9145196724585581, 'support': 14861.0} | {'precision': 0.9996992255056771, 'recall': 0.99565640679997, 'f1-score': 0.9976737205463005, 'support': 13353.0} | 0.9126 | {'precision': 0.8612134066118546, 'recall': 0.8585949081061879, 'f1-score': 0.8595942374539386, 'support': 36380.0} | {'precision': 0.9108414479595167, 'recall': 0.9126443100604728, 'f1-score': 0.9115468219984093, 'support': 36380.0} |
|
82 |
+
| No log | 7.0 | 287 | 0.3082 | {'precision': 0.7455357142857143, 'recall': 0.49262536873156343, 'f1-score': 0.5932504440497335, 'support': 339.0} | {'precision': 0.9530201342281879, 'recall': 0.8875, 'f1-score': 0.919093851132686, 'support': 160.0} | {'precision': 0.8419083255378859, 'recall': 0.9564293304994687, 'f1-score': 0.8955223880597015, 'support': 941.0} | {'precision': 0.7359364659166115, 'recall': 0.4733929331630481, 'f1-score': 0.5761658031088083, 'support': 4698.0} | {'precision': 0.912444663059518, 'recall': 0.9146942800788954, 'f1-score': 0.9135680866781581, 'support': 2028.0} | {'precision': 0.8574441164065795, 'recall': 0.9576071596796986, 'f1-score': 0.9047619047619048, 'support': 14861.0} | {'precision': 0.9997741984043353, 'recall': 0.9947577323447915, 'f1-score': 0.9972596568940275, 'support': 13353.0} | 0.9016 | {'precision': 0.8637233739769761, 'recall': 0.8110009720710665, 'f1-score': 0.8285174478121456, 'support': 36380.0} | {'precision': 0.8960358642584588, 'recall': 0.9016492578339748, 'f1-score': 0.8936908018647435, 'support': 36380.0} |
|
83 |
+
| No log | 8.0 | 328 | 0.3109 | {'precision': 0.714765100671141, 'recall': 0.6283185840707964, 'f1-score': 0.6687598116169545, 'support': 339.0} | {'precision': 0.9577464788732394, 'recall': 0.85, 'f1-score': 0.9006622516556291, 'support': 160.0} | {'precision': 0.8762475049900199, 'recall': 0.9330499468650372, 'f1-score': 0.9037570766855377, 'support': 941.0} | {'precision': 0.7084223013048636, 'recall': 0.6355896126011068, 'f1-score': 0.6700325367440816, 'support': 4698.0} | {'precision': 0.951974386339381, 'recall': 0.8796844181459567, 'f1-score': 0.9144028703229115, 'support': 2028.0} | {'precision': 0.8920465505047258, 'recall': 0.9335845501648611, 'f1-score': 0.9123429999342408, 'support': 14861.0} | {'precision': 0.9993983152827918, 'recall': 0.9951321800344491, 'f1-score': 0.9972606852039475, 'support': 13353.0} | 0.9115 | {'precision': 0.8715143768523089, 'recall': 0.8364798988403154, 'f1-score': 0.8524597474519003, 'support': 36380.0} | {'precision': 0.9093055312257066, 'recall': 0.9114623419461243, 'f1-score': 0.9097917557931217, 'support': 36380.0} |
|
84 |
+
| No log | 9.0 | 369 | 0.3515 | {'precision': 0.7183098591549296, 'recall': 0.6017699115044248, 'f1-score': 0.6548956661316213, 'support': 339.0} | {'precision': 0.9517241379310345, 'recall': 0.8625, 'f1-score': 0.9049180327868853, 'support': 160.0} | {'precision': 0.8705533596837944, 'recall': 0.9362380446333688, 'f1-score': 0.9022017409114182, 'support': 941.0} | {'precision': 0.7166541070082894, 'recall': 0.60727969348659, 'f1-score': 0.6574490148634635, 'support': 4698.0} | {'precision': 0.941908713692946, 'recall': 0.8954635108481263, 'f1-score': 0.9180990899898889, 'support': 2028.0} | {'precision': 0.8871285868804479, 'recall': 0.938227575533275, 'f1-score': 0.9119628491072013, 'support': 14861.0} | {'precision': 0.9994741981521821, 'recall': 0.9964801917172171, 'f1-score': 0.9979749493737343, 'support': 13353.0} | 0.9110 | {'precision': 0.8693932803576605, 'recall': 0.8339941325318574, 'f1-score': 0.8496430490234591, 'support': 36380.0} | {'precision': 0.9076856069113689, 'recall': 0.9109675645959319, 'f1-score': 0.908328976914783, 'support': 36380.0} |
|
85 |
+
| No log | 10.0 | 410 | 0.3666 | {'precision': 0.7186440677966102, 'recall': 0.6253687315634219, 'f1-score': 0.6687697160883281, 'support': 339.0} | {'precision': 0.9403973509933775, 'recall': 0.8875, 'f1-score': 0.9131832797427653, 'support': 160.0} | {'precision': 0.8801611278952669, 'recall': 0.9287991498405951, 'f1-score': 0.9038262668045501, 'support': 941.0} | {'precision': 0.7035942885278188, 'recall': 0.6083439761600681, 'f1-score': 0.6525114155251142, 'support': 4698.0} | {'precision': 0.9091796875, 'recall': 0.9181459566074951, 'f1-score': 0.913640824337586, 'support': 2028.0} | {'precision': 0.8907005220081201, 'recall': 0.9300181683601373, 'f1-score': 0.909934821252222, 'support': 14861.0} | {'precision': 0.9993991287366681, 'recall': 0.9964801917172171, 'f1-score': 0.9979375257809279, 'support': 13353.0} | 0.9092 | {'precision': 0.8631537390654088, 'recall': 0.8420937391784192, 'f1-score': 0.8514005499330703, 'support': 36380.0} | {'precision': 0.9058079970815979, 'recall': 0.9091533809785597, 'f1-score': 0.9068083056033942, 'support': 36380.0} |
|
86 |
+
| No log | 11.0 | 451 | 0.3872 | {'precision': 0.7272727272727273, 'recall': 0.6607669616519174, 'f1-score': 0.6924265842349304, 'support': 339.0} | {'precision': 0.9316770186335404, 'recall': 0.9375, 'f1-score': 0.9345794392523364, 'support': 160.0} | {'precision': 0.8900308324768756, 'recall': 0.9202975557917109, 'f1-score': 0.9049111807732496, 'support': 941.0} | {'precision': 0.7143188674866559, 'recall': 0.6551724137931034, 'f1-score': 0.6834684134562007, 'support': 4698.0} | {'precision': 0.9243452958292919, 'recall': 0.9398422090729783, 'f1-score': 0.9320293398533007, 'support': 2028.0} | {'precision': 0.9015017378188733, 'recall': 0.9250386918780701, 'f1-score': 0.9131185652607107, 'support': 14861.0} | {'precision': 0.9993242228562847, 'recall': 0.9967048603310118, 'f1-score': 0.9980128229162761, 'support': 13353.0} | 0.9148 | {'precision': 0.8697815289106071, 'recall': 0.8621889560741132, 'f1-score': 0.8655066208210008, 'support': 36380.0} | {'precision': 0.9127204168171501, 'recall': 0.9147883452446399, 'f1-score': 0.9135018437004899, 'support': 36380.0} |
|
87 |
+
| No log | 12.0 | 492 | 0.4655 | {'precision': 0.7546468401486989, 'recall': 0.5988200589970502, 'f1-score': 0.6677631578947368, 'support': 339.0} | {'precision': 0.9325153374233128, 'recall': 0.95, 'f1-score': 0.9411764705882352, 'support': 160.0} | {'precision': 0.875, 'recall': 0.9373007438894793, 'f1-score': 0.9050795279630579, 'support': 941.0} | {'precision': 0.7343623070674249, 'recall': 0.5772669220945083, 'f1-score': 0.6464068644976761, 'support': 4698.0} | {'precision': 0.9018867924528302, 'recall': 0.9428007889546351, 'f1-score': 0.9218900675024109, 'support': 2028.0} | {'precision': 0.8842823737597169, 'recall': 0.9415247964470762, 'f1-score': 0.9120062573328118, 'support': 14861.0} | {'precision': 0.9992483463619964, 'recall': 0.9955815172620385, 'f1-score': 0.997411561691113, 'support': 13353.0} | 0.9111 | {'precision': 0.8688488567448543, 'recall': 0.8490421182349696, 'f1-score': 0.8559619867814344, 'support': 36380.0} | {'precision': 0.9068649475511307, 'recall': 0.9111324903793293, 'f1-score': 0.907279105591616, 'support': 36380.0} |
|
88 |
+
| 0.1948 | 13.0 | 533 | 0.4358 | {'precision': 0.7190332326283988, 'recall': 0.7020648967551623, 'f1-score': 0.7104477611940299, 'support': 339.0} | {'precision': 0.9490445859872612, 'recall': 0.93125, 'f1-score': 0.9400630914826499, 'support': 160.0} | {'precision': 0.9012605042016807, 'recall': 0.9117959617428267, 'f1-score': 0.9064976228209191, 'support': 941.0} | {'precision': 0.7068927548998019, 'recall': 0.6832694763729247, 'f1-score': 0.6948803983115057, 'support': 4698.0} | {'precision': 0.9245098039215687, 'recall': 0.9299802761341223, 'f1-score': 0.927236971484759, 'support': 2028.0} | {'precision': 0.9093388319808434, 'recall': 0.9199246349505417, 'f1-score': 0.9146011038635222, 'support': 14861.0} | {'precision': 0.9993996247654784, 'recall': 0.9973039766344641, 'f1-score': 0.9983507009520954, 'support': 13353.0} | 0.9161 | {'precision': 0.8727827626264332, 'recall': 0.8679413175128632, 'f1-score': 0.8702968071584973, 'support': 36380.0} | {'precision': 0.9152897512508446, 'recall': 0.9161352391423859, 'f1-score': 0.9156711036977506, 'support': 36380.0} |
|
89 |
+
| 0.1948 | 14.0 | 574 | 0.4497 | {'precision': 0.7331288343558282, 'recall': 0.7050147492625368, 'f1-score': 0.718796992481203, 'support': 339.0} | {'precision': 0.9612903225806452, 'recall': 0.93125, 'f1-score': 0.9460317460317461, 'support': 160.0} | {'precision': 0.9009384775808134, 'recall': 0.9181721572794899, 'f1-score': 0.9094736842105262, 'support': 941.0} | {'precision': 0.7201365187713311, 'recall': 0.6736909323116219, 'f1-score': 0.6961398878258, 'support': 4698.0} | {'precision': 0.9266732283464567, 'recall': 0.9285009861932939, 'f1-score': 0.9275862068965517, 'support': 2028.0} | {'precision': 0.9067807768268598, 'recall': 0.9268555278917974, 'f1-score': 0.9167082626202122, 'support': 14861.0} | {'precision': 0.9993244764692637, 'recall': 0.9970793080206695, 'f1-score': 0.9982006297795771, 'support': 13353.0} | 0.9178 | {'precision': 0.8783246621330283, 'recall': 0.8686519515656299, 'f1-score': 0.8732767728350882, 'support': 36380.0} | {'precision': 0.9162249523049875, 'recall': 0.9177570093457944, 'f1-score': 0.9168399262643154, 'support': 36380.0} |
|
90 |
+
| 0.1948 | 15.0 | 615 | 0.4661 | {'precision': 0.7324414715719063, 'recall': 0.6460176991150443, 'f1-score': 0.6865203761755485, 'support': 339.0} | {'precision': 0.954248366013072, 'recall': 0.9125, 'f1-score': 0.9329073482428115, 'support': 160.0} | {'precision': 0.8846153846153846, 'recall': 0.9287991498405951, 'f1-score': 0.9061689994815967, 'support': 941.0} | {'precision': 0.7287968441814595, 'recall': 0.6292039165602384, 'f1-score': 0.6753484121544437, 'support': 4698.0} | {'precision': 0.9236453201970444, 'recall': 0.9245562130177515, 'f1-score': 0.9241005421389847, 'support': 2028.0} | {'precision': 0.8956415373720467, 'recall': 0.9361415786286252, 'f1-score': 0.9154438375995262, 'support': 14861.0} | {'precision': 0.9993243750469184, 'recall': 0.9969295289448065, 'f1-score': 0.9981255154832421, 'support': 13353.0} | 0.9152 | {'precision': 0.8741018998568331, 'recall': 0.853449726586723, 'f1-score': 0.8626592901823076, 'support': 36380.0} | {'precision': 0.9121645966069168, 'recall': 0.9151731720725673, 'f1-score': 0.9129726286511344, 'support': 36380.0} |
|
91 |
+
| 0.1948 | 16.0 | 656 | 0.4671 | {'precision': 0.7346278317152104, 'recall': 0.6696165191740413, 'f1-score': 0.7006172839506173, 'support': 339.0} | {'precision': 0.9490445859872612, 'recall': 0.93125, 'f1-score': 0.9400630914826499, 'support': 160.0} | {'precision': 0.8921971252566735, 'recall': 0.9234856535600425, 'f1-score': 0.9075718015665796, 'support': 941.0} | {'precision': 0.7273820981713186, 'recall': 0.6434653043848446, 'f1-score': 0.6828552066862436, 'support': 4698.0} | {'precision': 0.9140926640926641, 'recall': 0.9339250493096647, 'f1-score': 0.9239024390243903, 'support': 2028.0} | {'precision': 0.9001753588361369, 'recall': 0.9326424870466321, 'f1-score': 0.9161213563355145, 'support': 14861.0} | {'precision': 0.999324070597071, 'recall': 0.9964801917172171, 'f1-score': 0.9979001049947502, 'support': 13353.0} | 0.9161 | {'precision': 0.8738348192366193, 'recall': 0.8615521721703489, 'f1-score': 0.8670044691486779, 'support': 36380.0} | {'precision': 0.9134949094533051, 'recall': 0.9161077515118197, 'f1-score': 0.914324131528891, 'support': 36380.0} |
|
92 |
|
93 |
|
94 |
### Framework versions
|
meta_data/README_s42_e16.md
CHANGED
@@ -17,12 +17,12 @@ model-index:
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: sep_tok_full_labels
|
20 |
-
split: train[
|
21 |
args: sep_tok_full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,17 +32,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B-claim: {'precision': 0.
|
37 |
-
- B-majorclaim: {'precision': 0.
|
38 |
-
- B-premise: {'precision': 0.
|
39 |
-
- I-claim: {'precision': 0.
|
40 |
-
- I-majorclaim: {'precision': 0.
|
41 |
-
- I-premise: {'precision': 0.
|
42 |
-
- O: {'precision': 0.
|
43 |
-
- Accuracy: 0.
|
44 |
-
- Macro avg: {'precision': 0.
|
45 |
-
- Weighted avg: {'precision': 0.
|
46 |
|
47 |
## Model description
|
48 |
|
@@ -71,24 +71,24 @@ The following hyperparameters were used during training:
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
75 |
-
|
76 |
-
| No log | 1.0 | 41 | 0.
|
77 |
-
| No log | 2.0 | 82 | 0.
|
78 |
-
| No log | 3.0 | 123 | 0.
|
79 |
-
| No log | 4.0 | 164 | 0.
|
80 |
-
| No log | 5.0 | 205 | 0.
|
81 |
-
| No log | 6.0 | 246 | 0.
|
82 |
-
| No log | 7.0 | 287 | 0.
|
83 |
-
| No log | 8.0 | 328 | 0.
|
84 |
-
| No log | 9.0 | 369 | 0.
|
85 |
-
| No log | 10.0 | 410 | 0.
|
86 |
-
| No log | 11.0 | 451 | 0.
|
87 |
-
| No log | 12.0 | 492 | 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: sep_tok_full_labels
|
20 |
+
split: train[60%:80%]
|
21 |
args: sep_tok_full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9161077515118197
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4671
|
36 |
+
- B-claim: {'precision': 0.7346278317152104, 'recall': 0.6696165191740413, 'f1-score': 0.7006172839506173, 'support': 339.0}
|
37 |
+
- B-majorclaim: {'precision': 0.9490445859872612, 'recall': 0.93125, 'f1-score': 0.9400630914826499, 'support': 160.0}
|
38 |
+
- B-premise: {'precision': 0.8921971252566735, 'recall': 0.9234856535600425, 'f1-score': 0.9075718015665796, 'support': 941.0}
|
39 |
+
- I-claim: {'precision': 0.7273820981713186, 'recall': 0.6434653043848446, 'f1-score': 0.6828552066862436, 'support': 4698.0}
|
40 |
+
- I-majorclaim: {'precision': 0.9140926640926641, 'recall': 0.9339250493096647, 'f1-score': 0.9239024390243903, 'support': 2028.0}
|
41 |
+
- I-premise: {'precision': 0.9001753588361369, 'recall': 0.9326424870466321, 'f1-score': 0.9161213563355145, 'support': 14861.0}
|
42 |
+
- O: {'precision': 0.999324070597071, 'recall': 0.9964801917172171, 'f1-score': 0.9979001049947502, 'support': 13353.0}
|
43 |
+
- Accuracy: 0.9161
|
44 |
+
- Macro avg: {'precision': 0.8738348192366193, 'recall': 0.8615521721703489, 'f1-score': 0.8670044691486779, 'support': 36380.0}
|
45 |
+
- Weighted avg: {'precision': 0.9134949094533051, 'recall': 0.9161077515118197, 'f1-score': 0.914324131528891, 'support': 36380.0}
|
46 |
|
47 |
## Model description
|
48 |
|
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
75 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
76 |
+
| No log | 1.0 | 41 | 0.4724 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 339.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 160.0} | {'precision': 0.8, 'recall': 0.7863974495217854, 'f1-score': 0.7931404072883173, 'support': 941.0} | {'precision': 0.46561443066516345, 'recall': 0.35163899531715626, 'f1-score': 0.40067911714770804, 'support': 4698.0} | {'precision': 0.4144271570014144, 'recall': 0.8668639053254438, 'f1-score': 0.5607655502392344, 'support': 2028.0} | {'precision': 0.8844441252513645, 'recall': 0.8286790929277976, 'f1-score': 0.8556539864512767, 'support': 14861.0} | {'precision': 0.9700167382286587, 'recall': 0.9982026510896428, 'f1-score': 0.9839078762825717, 'support': 13353.0} | 0.8190 | {'precision': 0.5049289215923716, 'recall': 0.5473974420259752, 'f1-score': 0.5134495624870155, 'support': 36380.0} | {'precision': 0.8212499318469384, 'recall': 0.8189664650907091, 'f1-score': 0.8141826255128369, 'support': 36380.0} |
|
77 |
+
| No log | 2.0 | 82 | 0.2806 | {'precision': 0.39147286821705424, 'recall': 0.29793510324483774, 'f1-score': 0.33835845896147404, 'support': 339.0} | {'precision': 1.0, 'recall': 0.0125, 'f1-score': 0.02469135802469136, 'support': 160.0} | {'precision': 0.788975021533161, 'recall': 0.973432518597237, 'f1-score': 0.8715509039010466, 'support': 941.0} | {'precision': 0.6001651073197578, 'recall': 0.46424010217113665, 'f1-score': 0.5235237638022083, 'support': 4698.0} | {'precision': 0.890087660148348, 'recall': 0.650887573964497, 'f1-score': 0.7519225291939617, 'support': 2028.0} | {'precision': 0.8537944400702562, 'recall': 0.9485902698337931, 'f1-score': 0.8986994772408516, 'support': 14861.0} | {'precision': 0.9998499737454054, 'recall': 0.9982026510896428, 'f1-score': 0.9990256333383302, 'support': 13353.0} | 0.8781 | {'precision': 0.7891921530048547, 'recall': 0.6208268884144491, 'f1-score': 0.6296817320660805, 'support': 36380.0} | {'precision': 0.871331614069924, 'recall': 0.8781198460692689, 'f1-score': 0.8691247740581066, 'support': 36380.0} |
|
78 |
+
| No log | 3.0 | 123 | 0.2463 | {'precision': 0.705, 'recall': 0.415929203539823, 'f1-score': 0.523191094619666, 'support': 339.0} | {'precision': 0.9416058394160584, 'recall': 0.80625, 'f1-score': 0.8686868686868686, 'support': 160.0} | {'precision': 0.8233695652173914, 'recall': 0.9659936238044633, 'f1-score': 0.888997555012225, 'support': 941.0} | {'precision': 0.6939824614454189, 'recall': 0.4885057471264368, 'f1-score': 0.5733916302311056, 'support': 4698.0} | {'precision': 0.900974858902001, 'recall': 0.8658777120315582, 'f1-score': 0.883077696756349, 'support': 2028.0} | {'precision': 0.862554311241662, 'recall': 0.9484556893883319, 'f1-score': 0.9034677264277932, 'support': 14861.0} | {'precision': 0.9997751461549993, 'recall': 0.9989515464689583, 'f1-score': 0.9993631766248362, 'support': 13353.0} | 0.8979 | {'precision': 0.8467517403396473, 'recall': 0.7842805031942245, 'f1-score': 0.8057393926226919, 'support': 36380.0} | {'precision': 0.8911590560437058, 'recall': 0.8978559648158329, 'f1-score': 0.8908329908492291, 'support': 36380.0} |
|
79 |
+
| No log | 4.0 | 164 | 0.2455 | {'precision': 0.7248908296943232, 'recall': 0.4896755162241888, 'f1-score': 0.5845070422535211, 'support': 339.0} | {'precision': 0.9424460431654677, 'recall': 0.81875, 'f1-score': 0.8762541806020067, 'support': 160.0} | {'precision': 0.8409302325581396, 'recall': 0.9606801275239107, 'f1-score': 0.8968253968253969, 'support': 941.0} | {'precision': 0.7380442541042113, 'recall': 0.44018731375053216, 'f1-score': 0.5514666666666667, 'support': 4698.0} | {'precision': 0.8909090909090909, 'recall': 0.8939842209072978, 'f1-score': 0.8924440068914595, 'support': 2028.0} | {'precision': 0.8539305737802696, 'recall': 0.9633941188345333, 'f1-score': 0.9053656685743194, 'support': 14861.0} | {'precision': 0.999850007499625, 'recall': 0.9984273197034375, 'f1-score': 0.9991381571551693, 'support': 13353.0} | 0.8997 | {'precision': 0.8558572902444468, 'recall': 0.7950140881348429, 'f1-score': 0.8151430169955056, 'support': 36380.0} | {'precision': 0.8934359443718076, 'recall': 0.8996976360637713, 'f1-score': 0.8900236150023304, 'support': 36380.0} |
|
80 |
+
| No log | 5.0 | 205 | 0.2526 | {'precision': 0.7388059701492538, 'recall': 0.584070796460177, 'f1-score': 0.6523887973640857, 'support': 339.0} | {'precision': 0.9315068493150684, 'recall': 0.85, 'f1-score': 0.888888888888889, 'support': 160.0} | {'precision': 0.8685491723466408, 'recall': 0.9479277364505845, 'f1-score': 0.9065040650406505, 'support': 941.0} | {'precision': 0.7125307125307125, 'recall': 0.6172839506172839, 'f1-score': 0.6614963503649636, 'support': 4698.0} | {'precision': 0.8987531172069826, 'recall': 0.888560157790927, 'f1-score': 0.8936275725266551, 'support': 2028.0} | {'precision': 0.8955877616747182, 'recall': 0.9356032568467801, 'f1-score': 0.9151582965839531, 'support': 14861.0} | {'precision': 0.9991003823375065, 'recall': 0.9980528720137797, 'f1-score': 0.9985763524651581, 'support': 13353.0} | 0.9115 | {'precision': 0.8635477093658405, 'recall': 0.8316426814542189, 'f1-score': 0.8452343318906221, 'support': 36380.0} | {'precision': 0.9081159656876019, 'recall': 0.9114623419461243, 'f1-score': 0.9090309620899378, 'support': 36380.0} |
|
81 |
+
| No log | 6.0 | 246 | 0.2673 | {'precision': 0.7210031347962382, 'recall': 0.6784660766961652, 'f1-score': 0.6990881458966565, 'support': 339.0} | {'precision': 0.9192546583850931, 'recall': 0.925, 'f1-score': 0.9221183800623053, 'support': 160.0} | {'precision': 0.8932642487046633, 'recall': 0.9160467587672688, 'f1-score': 0.9045120671563485, 'support': 941.0} | {'precision': 0.7050987597611392, 'recall': 0.6534695615155385, 'f1-score': 0.6783031374281926, 'support': 4698.0} | {'precision': 0.8852927177534508, 'recall': 0.9171597633136095, 'f1-score': 0.9009445386292081, 'support': 2028.0} | {'precision': 0.904881101376721, 'recall': 0.9243657896507638, 'f1-score': 0.9145196724585581, 'support': 14861.0} | {'precision': 0.9996992255056771, 'recall': 0.99565640679997, 'f1-score': 0.9976737205463005, 'support': 13353.0} | 0.9126 | {'precision': 0.8612134066118546, 'recall': 0.8585949081061879, 'f1-score': 0.8595942374539386, 'support': 36380.0} | {'precision': 0.9108414479595167, 'recall': 0.9126443100604728, 'f1-score': 0.9115468219984093, 'support': 36380.0} |
|
82 |
+
| No log | 7.0 | 287 | 0.3082 | {'precision': 0.7455357142857143, 'recall': 0.49262536873156343, 'f1-score': 0.5932504440497335, 'support': 339.0} | {'precision': 0.9530201342281879, 'recall': 0.8875, 'f1-score': 0.919093851132686, 'support': 160.0} | {'precision': 0.8419083255378859, 'recall': 0.9564293304994687, 'f1-score': 0.8955223880597015, 'support': 941.0} | {'precision': 0.7359364659166115, 'recall': 0.4733929331630481, 'f1-score': 0.5761658031088083, 'support': 4698.0} | {'precision': 0.912444663059518, 'recall': 0.9146942800788954, 'f1-score': 0.9135680866781581, 'support': 2028.0} | {'precision': 0.8574441164065795, 'recall': 0.9576071596796986, 'f1-score': 0.9047619047619048, 'support': 14861.0} | {'precision': 0.9997741984043353, 'recall': 0.9947577323447915, 'f1-score': 0.9972596568940275, 'support': 13353.0} | 0.9016 | {'precision': 0.8637233739769761, 'recall': 0.8110009720710665, 'f1-score': 0.8285174478121456, 'support': 36380.0} | {'precision': 0.8960358642584588, 'recall': 0.9016492578339748, 'f1-score': 0.8936908018647435, 'support': 36380.0} |
|
83 |
+
| No log | 8.0 | 328 | 0.3109 | {'precision': 0.714765100671141, 'recall': 0.6283185840707964, 'f1-score': 0.6687598116169545, 'support': 339.0} | {'precision': 0.9577464788732394, 'recall': 0.85, 'f1-score': 0.9006622516556291, 'support': 160.0} | {'precision': 0.8762475049900199, 'recall': 0.9330499468650372, 'f1-score': 0.9037570766855377, 'support': 941.0} | {'precision': 0.7084223013048636, 'recall': 0.6355896126011068, 'f1-score': 0.6700325367440816, 'support': 4698.0} | {'precision': 0.951974386339381, 'recall': 0.8796844181459567, 'f1-score': 0.9144028703229115, 'support': 2028.0} | {'precision': 0.8920465505047258, 'recall': 0.9335845501648611, 'f1-score': 0.9123429999342408, 'support': 14861.0} | {'precision': 0.9993983152827918, 'recall': 0.9951321800344491, 'f1-score': 0.9972606852039475, 'support': 13353.0} | 0.9115 | {'precision': 0.8715143768523089, 'recall': 0.8364798988403154, 'f1-score': 0.8524597474519003, 'support': 36380.0} | {'precision': 0.9093055312257066, 'recall': 0.9114623419461243, 'f1-score': 0.9097917557931217, 'support': 36380.0} |
|
84 |
+
| No log | 9.0 | 369 | 0.3515 | {'precision': 0.7183098591549296, 'recall': 0.6017699115044248, 'f1-score': 0.6548956661316213, 'support': 339.0} | {'precision': 0.9517241379310345, 'recall': 0.8625, 'f1-score': 0.9049180327868853, 'support': 160.0} | {'precision': 0.8705533596837944, 'recall': 0.9362380446333688, 'f1-score': 0.9022017409114182, 'support': 941.0} | {'precision': 0.7166541070082894, 'recall': 0.60727969348659, 'f1-score': 0.6574490148634635, 'support': 4698.0} | {'precision': 0.941908713692946, 'recall': 0.8954635108481263, 'f1-score': 0.9180990899898889, 'support': 2028.0} | {'precision': 0.8871285868804479, 'recall': 0.938227575533275, 'f1-score': 0.9119628491072013, 'support': 14861.0} | {'precision': 0.9994741981521821, 'recall': 0.9964801917172171, 'f1-score': 0.9979749493737343, 'support': 13353.0} | 0.9110 | {'precision': 0.8693932803576605, 'recall': 0.8339941325318574, 'f1-score': 0.8496430490234591, 'support': 36380.0} | {'precision': 0.9076856069113689, 'recall': 0.9109675645959319, 'f1-score': 0.908328976914783, 'support': 36380.0} |
|
85 |
+
| No log | 10.0 | 410 | 0.3666 | {'precision': 0.7186440677966102, 'recall': 0.6253687315634219, 'f1-score': 0.6687697160883281, 'support': 339.0} | {'precision': 0.9403973509933775, 'recall': 0.8875, 'f1-score': 0.9131832797427653, 'support': 160.0} | {'precision': 0.8801611278952669, 'recall': 0.9287991498405951, 'f1-score': 0.9038262668045501, 'support': 941.0} | {'precision': 0.7035942885278188, 'recall': 0.6083439761600681, 'f1-score': 0.6525114155251142, 'support': 4698.0} | {'precision': 0.9091796875, 'recall': 0.9181459566074951, 'f1-score': 0.913640824337586, 'support': 2028.0} | {'precision': 0.8907005220081201, 'recall': 0.9300181683601373, 'f1-score': 0.909934821252222, 'support': 14861.0} | {'precision': 0.9993991287366681, 'recall': 0.9964801917172171, 'f1-score': 0.9979375257809279, 'support': 13353.0} | 0.9092 | {'precision': 0.8631537390654088, 'recall': 0.8420937391784192, 'f1-score': 0.8514005499330703, 'support': 36380.0} | {'precision': 0.9058079970815979, 'recall': 0.9091533809785597, 'f1-score': 0.9068083056033942, 'support': 36380.0} |
|
86 |
+
| No log | 11.0 | 451 | 0.3872 | {'precision': 0.7272727272727273, 'recall': 0.6607669616519174, 'f1-score': 0.6924265842349304, 'support': 339.0} | {'precision': 0.9316770186335404, 'recall': 0.9375, 'f1-score': 0.9345794392523364, 'support': 160.0} | {'precision': 0.8900308324768756, 'recall': 0.9202975557917109, 'f1-score': 0.9049111807732496, 'support': 941.0} | {'precision': 0.7143188674866559, 'recall': 0.6551724137931034, 'f1-score': 0.6834684134562007, 'support': 4698.0} | {'precision': 0.9243452958292919, 'recall': 0.9398422090729783, 'f1-score': 0.9320293398533007, 'support': 2028.0} | {'precision': 0.9015017378188733, 'recall': 0.9250386918780701, 'f1-score': 0.9131185652607107, 'support': 14861.0} | {'precision': 0.9993242228562847, 'recall': 0.9967048603310118, 'f1-score': 0.9980128229162761, 'support': 13353.0} | 0.9148 | {'precision': 0.8697815289106071, 'recall': 0.8621889560741132, 'f1-score': 0.8655066208210008, 'support': 36380.0} | {'precision': 0.9127204168171501, 'recall': 0.9147883452446399, 'f1-score': 0.9135018437004899, 'support': 36380.0} |
|
87 |
+
| No log | 12.0 | 492 | 0.4655 | {'precision': 0.7546468401486989, 'recall': 0.5988200589970502, 'f1-score': 0.6677631578947368, 'support': 339.0} | {'precision': 0.9325153374233128, 'recall': 0.95, 'f1-score': 0.9411764705882352, 'support': 160.0} | {'precision': 0.875, 'recall': 0.9373007438894793, 'f1-score': 0.9050795279630579, 'support': 941.0} | {'precision': 0.7343623070674249, 'recall': 0.5772669220945083, 'f1-score': 0.6464068644976761, 'support': 4698.0} | {'precision': 0.9018867924528302, 'recall': 0.9428007889546351, 'f1-score': 0.9218900675024109, 'support': 2028.0} | {'precision': 0.8842823737597169, 'recall': 0.9415247964470762, 'f1-score': 0.9120062573328118, 'support': 14861.0} | {'precision': 0.9992483463619964, 'recall': 0.9955815172620385, 'f1-score': 0.997411561691113, 'support': 13353.0} | 0.9111 | {'precision': 0.8688488567448543, 'recall': 0.8490421182349696, 'f1-score': 0.8559619867814344, 'support': 36380.0} | {'precision': 0.9068649475511307, 'recall': 0.9111324903793293, 'f1-score': 0.907279105591616, 'support': 36380.0} |
|
88 |
+
| 0.1948 | 13.0 | 533 | 0.4358 | {'precision': 0.7190332326283988, 'recall': 0.7020648967551623, 'f1-score': 0.7104477611940299, 'support': 339.0} | {'precision': 0.9490445859872612, 'recall': 0.93125, 'f1-score': 0.9400630914826499, 'support': 160.0} | {'precision': 0.9012605042016807, 'recall': 0.9117959617428267, 'f1-score': 0.9064976228209191, 'support': 941.0} | {'precision': 0.7068927548998019, 'recall': 0.6832694763729247, 'f1-score': 0.6948803983115057, 'support': 4698.0} | {'precision': 0.9245098039215687, 'recall': 0.9299802761341223, 'f1-score': 0.927236971484759, 'support': 2028.0} | {'precision': 0.9093388319808434, 'recall': 0.9199246349505417, 'f1-score': 0.9146011038635222, 'support': 14861.0} | {'precision': 0.9993996247654784, 'recall': 0.9973039766344641, 'f1-score': 0.9983507009520954, 'support': 13353.0} | 0.9161 | {'precision': 0.8727827626264332, 'recall': 0.8679413175128632, 'f1-score': 0.8702968071584973, 'support': 36380.0} | {'precision': 0.9152897512508446, 'recall': 0.9161352391423859, 'f1-score': 0.9156711036977506, 'support': 36380.0} |
|
89 |
+
| 0.1948 | 14.0 | 574 | 0.4497 | {'precision': 0.7331288343558282, 'recall': 0.7050147492625368, 'f1-score': 0.718796992481203, 'support': 339.0} | {'precision': 0.9612903225806452, 'recall': 0.93125, 'f1-score': 0.9460317460317461, 'support': 160.0} | {'precision': 0.9009384775808134, 'recall': 0.9181721572794899, 'f1-score': 0.9094736842105262, 'support': 941.0} | {'precision': 0.7201365187713311, 'recall': 0.6736909323116219, 'f1-score': 0.6961398878258, 'support': 4698.0} | {'precision': 0.9266732283464567, 'recall': 0.9285009861932939, 'f1-score': 0.9275862068965517, 'support': 2028.0} | {'precision': 0.9067807768268598, 'recall': 0.9268555278917974, 'f1-score': 0.9167082626202122, 'support': 14861.0} | {'precision': 0.9993244764692637, 'recall': 0.9970793080206695, 'f1-score': 0.9982006297795771, 'support': 13353.0} | 0.9178 | {'precision': 0.8783246621330283, 'recall': 0.8686519515656299, 'f1-score': 0.8732767728350882, 'support': 36380.0} | {'precision': 0.9162249523049875, 'recall': 0.9177570093457944, 'f1-score': 0.9168399262643154, 'support': 36380.0} |
|
90 |
+
| 0.1948 | 15.0 | 615 | 0.4661 | {'precision': 0.7324414715719063, 'recall': 0.6460176991150443, 'f1-score': 0.6865203761755485, 'support': 339.0} | {'precision': 0.954248366013072, 'recall': 0.9125, 'f1-score': 0.9329073482428115, 'support': 160.0} | {'precision': 0.8846153846153846, 'recall': 0.9287991498405951, 'f1-score': 0.9061689994815967, 'support': 941.0} | {'precision': 0.7287968441814595, 'recall': 0.6292039165602384, 'f1-score': 0.6753484121544437, 'support': 4698.0} | {'precision': 0.9236453201970444, 'recall': 0.9245562130177515, 'f1-score': 0.9241005421389847, 'support': 2028.0} | {'precision': 0.8956415373720467, 'recall': 0.9361415786286252, 'f1-score': 0.9154438375995262, 'support': 14861.0} | {'precision': 0.9993243750469184, 'recall': 0.9969295289448065, 'f1-score': 0.9981255154832421, 'support': 13353.0} | 0.9152 | {'precision': 0.8741018998568331, 'recall': 0.853449726586723, 'f1-score': 0.8626592901823076, 'support': 36380.0} | {'precision': 0.9121645966069168, 'recall': 0.9151731720725673, 'f1-score': 0.9129726286511344, 'support': 36380.0} |
|
91 |
+
| 0.1948 | 16.0 | 656 | 0.4671 | {'precision': 0.7346278317152104, 'recall': 0.6696165191740413, 'f1-score': 0.7006172839506173, 'support': 339.0} | {'precision': 0.9490445859872612, 'recall': 0.93125, 'f1-score': 0.9400630914826499, 'support': 160.0} | {'precision': 0.8921971252566735, 'recall': 0.9234856535600425, 'f1-score': 0.9075718015665796, 'support': 941.0} | {'precision': 0.7273820981713186, 'recall': 0.6434653043848446, 'f1-score': 0.6828552066862436, 'support': 4698.0} | {'precision': 0.9140926640926641, 'recall': 0.9339250493096647, 'f1-score': 0.9239024390243903, 'support': 2028.0} | {'precision': 0.9001753588361369, 'recall': 0.9326424870466321, 'f1-score': 0.9161213563355145, 'support': 14861.0} | {'precision': 0.999324070597071, 'recall': 0.9964801917172171, 'f1-score': 0.9979001049947502, 'support': 13353.0} | 0.9161 | {'precision': 0.8738348192366193, 'recall': 0.8615521721703489, 'f1-score': 0.8670044691486779, 'support': 36380.0} | {'precision': 0.9134949094533051, 'recall': 0.9161077515118197, 'f1-score': 0.914324131528891, 'support': 36380.0} |
|
92 |
|
93 |
|
94 |
### Framework versions
|
meta_data/meta_s42_e16_cvi3.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"B-Claim": {"precision": 0.
|
|
|
1 |
+
{"B-Claim": {"precision": 0.7346278317152104, "recall": 0.6696165191740413, "f1-score": 0.7006172839506173, "support": 339.0}, "B-MajorClaim": {"precision": 0.9490445859872612, "recall": 0.93125, "f1-score": 0.9400630914826499, "support": 160.0}, "B-Premise": {"precision": 0.8921971252566735, "recall": 0.9234856535600425, "f1-score": 0.9075718015665796, "support": 941.0}, "I-Claim": {"precision": 0.7273820981713186, "recall": 0.6434653043848446, "f1-score": 0.6828552066862436, "support": 4698.0}, "I-MajorClaim": {"precision": 0.9140926640926641, "recall": 0.9339250493096647, "f1-score": 0.9239024390243903, "support": 2028.0}, "I-Premise": {"precision": 0.9001753588361369, "recall": 0.9326424870466321, "f1-score": 0.9161213563355145, "support": 14861.0}, "O": {"precision": 0.999324070597071, "recall": 0.9964801917172171, "f1-score": 0.9979001049947502, "support": 13353.0}, "accuracy": 0.9161077515118197, "macro avg": {"precision": 0.8738348192366193, "recall": 0.8615521721703489, "f1-score": 0.8670044691486779, "support": 36380.0}, "weighted avg": {"precision": 0.9134949094533051, "recall": 0.9161077515118197, "f1-score": 0.914324131528891, "support": 36380.0}}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592330980
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdc920b5c8a86a744a91a32ebd6d291903be93215f38bee156fbd1ba7f493ceb
|
3 |
size 592330980
|