Theoreticallyhugo
commited on
Commit
•
55ce144
1
Parent(s):
985ca42
trainer: training complete at 2024-03-02 15:45:08.282408.
Browse files- README.md +31 -31
- meta_data/README_s42_e16.md +31 -31
- meta_data/meta_s42_e16_cvi2.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -17,12 +17,12 @@ model-index:
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: sep_tok_full_labels
|
20 |
-
split: train[
|
21 |
args: sep_tok_full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,17 +32,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B-claim: {'precision': 0.
|
37 |
-
- B-majorclaim: {'precision': 0.
|
38 |
-
- B-premise: {'precision': 0.
|
39 |
-
- I-claim: {'precision': 0.
|
40 |
-
- I-majorclaim: {'precision': 0.
|
41 |
-
- I-premise: {'precision': 0.
|
42 |
-
- O: {'precision':
|
43 |
-
- Accuracy: 0.
|
44 |
-
- Macro avg: {'precision': 0.
|
45 |
-
- Weighted avg: {'precision': 0.
|
46 |
|
47 |
## Model description
|
48 |
|
@@ -71,24 +71,24 @@ The following hyperparameters were used during training:
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
75 |
-
|
76 |
-
| No log | 1.0 | 41 | 0.
|
77 |
-
| No log | 2.0 | 82 | 0.
|
78 |
-
| No log | 3.0 | 123 | 0.2602 | {'precision': 0.
|
79 |
-
| No log | 4.0 | 164 | 0.
|
80 |
-
| No log | 5.0 | 205 | 0.
|
81 |
-
| No log | 6.0 | 246 | 0.
|
82 |
-
| No log | 7.0 | 287 | 0.
|
83 |
-
| No log | 8.0 | 328 | 0.
|
84 |
-
| No log | 9.0 | 369 | 0.
|
85 |
-
| No log | 10.0 | 410 | 0.
|
86 |
-
| No log | 11.0 | 451 | 0.
|
87 |
-
| No log | 12.0 | 492 | 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: sep_tok_full_labels
|
20 |
+
split: train[40%:60%]
|
21 |
args: sep_tok_full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9046282877493756
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4607
|
36 |
+
- B-claim: {'precision': 0.6819672131147541, 'recall': 0.6561514195583596, 'f1-score': 0.6688102893890675, 'support': 317.0}
|
37 |
+
- B-majorclaim: {'precision': 0.8853503184713376, 'recall': 0.896774193548387, 'f1-score': 0.8910256410256411, 'support': 155.0}
|
38 |
+
- B-premise: {'precision': 0.8817204301075269, 'recall': 0.8967193195625759, 'f1-score': 0.8891566265060241, 'support': 823.0}
|
39 |
+
- I-claim: {'precision': 0.6920813924981614, 'recall': 0.6498618784530387, 'f1-score': 0.6703074913926155, 'support': 4344.0}
|
40 |
+
- I-majorclaim: {'precision': 0.8773408239700374, 'recall': 0.8864711447492905, 'f1-score': 0.8818823529411765, 'support': 2114.0}
|
41 |
+
- I-premise: {'precision': 0.9018829810259, 'recall': 0.9187183067538767, 'f1-score': 0.9102228047182176, 'support': 13607.0}
|
42 |
+
- O: {'precision': 0.9999095513748191, 'recall': 0.9985547827657845, 'f1-score': 0.9992317078682154, 'support': 11071.0}
|
43 |
+
- Accuracy: 0.9046
|
44 |
+
- Macro avg: {'precision': 0.8457503872232196, 'recall': 0.8433215779130447, 'f1-score': 0.8443767019772797, 'support': 32431.0}
|
45 |
+
- Weighted avg: {'precision': 0.9029042970267227, 'recall': 0.9046282877493756, 'f1-score': 0.9036387628518002, 'support': 32431.0}
|
46 |
|
47 |
## Model description
|
48 |
|
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
75 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
76 |
+
| No log | 1.0 | 41 | 0.4118 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 317.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 155.0} | {'precision': 0.6759259259259259, 'recall': 0.9756986634264885, 'f1-score': 0.798607657881651, 'support': 823.0} | {'precision': 0.5029573299535277, 'recall': 0.5481123388581952, 'f1-score': 0.5245648821326283, 'support': 4344.0} | {'precision': 0.6704953338119167, 'recall': 0.44181646168401134, 'f1-score': 0.5326489877388081, 'support': 2114.0} | {'precision': 0.8756645636917842, 'recall': 0.9078415521422797, 'f1-score': 0.8914627985855524, 'support': 13607.0} | {'precision': 0.9967299482241803, 'recall': 0.9911480444404299, 'f1-score': 0.9939311594202898, 'support': 11071.0} | 0.8462 | {'precision': 0.5316818716581907, 'recall': 0.5520881515073436, 'f1-score': 0.5344593551084185, 'support': 32431.0} | {'precision': 0.835883129998383, 'recall': 0.8462273750423978, 'f1-score': 0.8385782145723601, 'support': 32431.0} |
|
77 |
+
| No log | 2.0 | 82 | 0.3001 | {'precision': 0.43, 'recall': 0.27129337539432175, 'f1-score': 0.3326885880077369, 'support': 317.0} | {'precision': 0.896551724137931, 'recall': 0.16774193548387098, 'f1-score': 0.28260869565217395, 'support': 155.0} | {'precision': 0.76981852913085, 'recall': 0.9793438639125152, 'f1-score': 0.8620320855614974, 'support': 823.0} | {'precision': 0.6927835051546392, 'recall': 0.46408839779005523, 'f1-score': 0.5558312655086849, 'support': 4344.0} | {'precision': 0.7640091116173121, 'recall': 0.793282876064333, 'f1-score': 0.7783708517057322, 'support': 2114.0} | {'precision': 0.8649596400688103, 'recall': 0.9607554934959948, 'f1-score': 0.9103443473416662, 'support': 13607.0} | {'precision': 0.9998171177761521, 'recall': 0.9876253274320296, 'f1-score': 0.9936838278729495, 'support': 11071.0} | 0.8824 | {'precision': 0.773991375412242, 'recall': 0.6605901813675886, 'f1-score': 0.6736513802357773, 'support': 32431.0} | {'precision': 0.8748383987044155, 'recall': 0.8824273072060683, 'f1-score': 0.8728332529732901, 'support': 32431.0} |
|
78 |
+
| No log | 3.0 | 123 | 0.2602 | {'precision': 0.6417322834645669, 'recall': 0.5141955835962145, 'f1-score': 0.5709281961471102, 'support': 317.0} | {'precision': 0.8357142857142857, 'recall': 0.7548387096774194, 'f1-score': 0.7932203389830508, 'support': 155.0} | {'precision': 0.8512304250559284, 'recall': 0.9246658566221142, 'f1-score': 0.8864298194525335, 'support': 823.0} | {'precision': 0.669375175119081, 'recall': 0.5499539594843462, 'f1-score': 0.6038165044862884, 'support': 4344.0} | {'precision': 0.7790169351507642, 'recall': 0.8921475875118259, 'f1-score': 0.831753031973539, 'support': 2114.0} | {'precision': 0.890888479523877, 'recall': 0.9240831924744617, 'f1-score': 0.9071822805815085, 'support': 13607.0} | {'precision': 0.9996376483377117, 'recall': 0.9967482612230151, 'f1-score': 0.9981908638625057, 'support': 11071.0} | 0.8919 | {'precision': 0.8096564617666021, 'recall': 0.7938047357984852, 'f1-score': 0.7987887193552196, 'support': 32431.0} | {'precision': 0.8873436833652745, 'recall': 0.8918935586321729, 'f1-score': 0.8883404854276872, 'support': 32431.0} |
|
79 |
+
| No log | 4.0 | 164 | 0.2530 | {'precision': 0.6433333333333333, 'recall': 0.6088328075709779, 'f1-score': 0.6256077795786061, 'support': 317.0} | {'precision': 0.8284023668639053, 'recall': 0.9032258064516129, 'f1-score': 0.8641975308641976, 'support': 155.0} | {'precision': 0.8792270531400966, 'recall': 0.8845686512758202, 'f1-score': 0.8818897637795277, 'support': 823.0} | {'precision': 0.6606835505286452, 'recall': 0.6185543278084714, 'f1-score': 0.6389252169777673, 'support': 4344.0} | {'precision': 0.8184976118106817, 'recall': 0.8916745506149479, 'f1-score': 0.8535204890196967, 'support': 2114.0} | {'precision': 0.9034563220067084, 'recall': 0.9105607407951789, 'f1-score': 0.9069946195234434, 'support': 13607.0} | {'precision': 1.0, 'recall': 0.9981031523800922, 'f1-score': 0.9990506758283985, 'support': 11071.0} | 0.8965 | {'precision': 0.8190857482404815, 'recall': 0.830788576699586, 'f1-score': 0.8243122965102339, 'support': 32431.0} | {'precision': 0.8948409351137605, 'recall': 0.8964570935216305, 'f1-score': 0.8954353191480889, 'support': 32431.0} |
|
80 |
+
| No log | 5.0 | 205 | 0.2600 | {'precision': 0.7109375, 'recall': 0.5741324921135647, 'f1-score': 0.6352530541012217, 'support': 317.0} | {'precision': 0.8896103896103896, 'recall': 0.8838709677419355, 'f1-score': 0.8867313915857605, 'support': 155.0} | {'precision': 0.863431151241535, 'recall': 0.9295261239368166, 'f1-score': 0.8952603861907549, 'support': 823.0} | {'precision': 0.7121212121212122, 'recall': 0.6275322283609577, 'f1-score': 0.667156142927068, 'support': 4344.0} | {'precision': 0.8813799621928167, 'recall': 0.8822138126773889, 'f1-score': 0.8817966903073287, 'support': 2114.0} | {'precision': 0.8983086830372939, 'recall': 0.9329021827000809, 'f1-score': 0.9152786790684261, 'support': 13607.0} | {'precision': 1.0, 'recall': 0.9990064131514769, 'f1-score': 0.9995029596493606, 'support': 11071.0} | 0.9074 | {'precision': 0.8508269854576067, 'recall': 0.8327406029546031, 'f1-score': 0.8401399005471315, 'support': 32431.0} | {'precision': 0.90422246218063, 'recall': 0.907434245012488, 'f1-score': 0.9052313102348954, 'support': 32431.0} |
|
81 |
+
| No log | 6.0 | 246 | 0.2758 | {'precision': 0.7026022304832714, 'recall': 0.5962145110410094, 'f1-score': 0.6450511945392492, 'support': 317.0} | {'precision': 0.9047619047619048, 'recall': 0.8580645161290322, 'f1-score': 0.880794701986755, 'support': 155.0} | {'precision': 0.8660612939841089, 'recall': 0.9270959902794653, 'f1-score': 0.8955399061032863, 'support': 823.0} | {'precision': 0.7183248866364363, 'recall': 0.6199355432780848, 'f1-score': 0.6655134066477203, 'support': 4344.0} | {'precision': 0.8960591133004926, 'recall': 0.8604541154210028, 'f1-score': 0.8778957528957528, 'support': 2114.0} | {'precision': 0.8941776752638568, 'recall': 0.9401778496362166, 'f1-score': 0.9166009887511642, 'support': 13607.0} | {'precision': 1.0, 'recall': 0.9979225002258152, 'f1-score': 0.9989601699896017, 'support': 11071.0} | 0.9077 | {'precision': 0.8545695863471529, 'recall': 0.8285521465729466, 'f1-score': 0.8400508744162184, 'support': 32431.0} | {'precision': 0.904334721335495, 'recall': 0.9077117572692794, 'f1-score': 0.9052009899846191, 'support': 32431.0} |
|
82 |
+
| No log | 7.0 | 287 | 0.2923 | {'precision': 0.6936619718309859, 'recall': 0.6214511041009464, 'f1-score': 0.6555740432612313, 'support': 317.0} | {'precision': 0.910958904109589, 'recall': 0.8580645161290322, 'f1-score': 0.883720930232558, 'support': 155.0} | {'precision': 0.8688147295742232, 'recall': 0.9173754556500607, 'f1-score': 0.892434988179669, 'support': 823.0} | {'precision': 0.6873800383877159, 'recall': 0.6595303867403315, 'f1-score': 0.6731672932330828, 'support': 4344.0} | {'precision': 0.9308342133051742, 'recall': 0.8339640491958372, 'f1-score': 0.8797405189620758, 'support': 2114.0} | {'precision': 0.8992862241256245, 'recall': 0.925920482104799, 'f1-score': 0.912409023427599, 'support': 13607.0} | {'precision': 1.0, 'recall': 0.9990064131514769, 'f1-score': 0.9995029596493606, 'support': 11071.0} | 0.9057 | {'precision': 0.8558480116190447, 'recall': 0.8307589152960692, 'f1-score': 0.8423642509922252, 'support': 32431.0} | {'precision': 0.9046120706425255, 'recall': 0.9056766673861429, 'f1-score': 0.9048109752434238, 'support': 32431.0} |
|
83 |
+
| No log | 8.0 | 328 | 0.3232 | {'precision': 0.7061224489795919, 'recall': 0.5457413249211357, 'f1-score': 0.6156583629893239, 'support': 317.0} | {'precision': 0.9084967320261438, 'recall': 0.896774193548387, 'f1-score': 0.9025974025974025, 'support': 155.0} | {'precision': 0.8496659242761693, 'recall': 0.9270959902794653, 'f1-score': 0.8866937826844857, 'support': 823.0} | {'precision': 0.7257503949447077, 'recall': 0.5287753222836096, 'f1-score': 0.6117991743241443, 'support': 4344.0} | {'precision': 0.8606143970655663, 'recall': 0.8878902554399243, 'f1-score': 0.8740395809080327, 'support': 2114.0} | {'precision': 0.8743462609522515, 'recall': 0.9460571764532961, 'f1-score': 0.9087892693258031, 'support': 13607.0} | {'precision': 0.9999096331104284, 'recall': 0.9994580435371692, 'f1-score': 0.999683787324389, 'support': 11071.0} | 0.9000 | {'precision': 0.8464151130506943, 'recall': 0.8188274723518553, 'f1-score': 0.8284659085933688, 'support': 32431.0} | {'precision': 0.8943036149810097, 'recall': 0.8999722487743209, 'f1-score': 0.8943167144432094, 'support': 32431.0} |
|
84 |
+
| No log | 9.0 | 369 | 0.3633 | {'precision': 0.7035573122529645, 'recall': 0.5615141955835962, 'f1-score': 0.6245614035087719, 'support': 317.0} | {'precision': 0.9060402684563759, 'recall': 0.8709677419354839, 'f1-score': 0.8881578947368421, 'support': 155.0} | {'precision': 0.8547486033519553, 'recall': 0.9295261239368166, 'f1-score': 0.890570430733411, 'support': 823.0} | {'precision': 0.7197630922693267, 'recall': 0.5315377532228361, 'f1-score': 0.6114936440677966, 'support': 4344.0} | {'precision': 0.8848780487804878, 'recall': 0.8580889309366131, 'f1-score': 0.8712776176753123, 'support': 2114.0} | {'precision': 0.8723188992310805, 'recall': 0.9504666715661056, 'f1-score': 0.9097175816832553, 'support': 13607.0} | {'precision': 0.9999095022624435, 'recall': 0.9980128263029536, 'f1-score': 0.9989602640025315, 'support': 11071.0} | 0.8998 | {'precision': 0.8487451038006621, 'recall': 0.8143020347834865, 'f1-score': 0.8278198337725601, 'support': 32431.0} | {'precision': 0.8943247645610162, 'recall': 0.8998489099935247, 'f1-score': 0.8943546419605405, 'support': 32431.0} |
|
85 |
+
| No log | 10.0 | 410 | 0.3689 | {'precision': 0.6383561643835617, 'recall': 0.7350157728706624, 'f1-score': 0.6832844574780059, 'support': 317.0} | {'precision': 0.879746835443038, 'recall': 0.896774193548387, 'f1-score': 0.8881789137380192, 'support': 155.0} | {'precision': 0.9108527131782945, 'recall': 0.8566221142162819, 'f1-score': 0.8829054477144646, 'support': 823.0} | {'precision': 0.6362704918032787, 'recall': 0.7147790055248618, 'f1-score': 0.6732437120555073, 'support': 4344.0} | {'precision': 0.8423403305046896, 'recall': 0.8921475875118259, 'f1-score': 0.8665288306914771, 'support': 2114.0} | {'precision': 0.9262117937635073, 'recall': 0.8818990225619167, 'f1-score': 0.9035124044723865, 'support': 13607.0} | {'precision': 1.0, 'recall': 0.9989160870743383, 'f1-score': 0.9994577496610935, 'support': 11071.0} | 0.8981 | {'precision': 0.8333969041537671, 'recall': 0.8537362547583249, 'f1-score': 0.8424445022587078, 'support': 32431.0} | {'precision': 0.9036718509873083, 'recall': 0.8981221670623786, 'f1-score': 0.9002621798749209, 'support': 32431.0} |
|
86 |
+
| No log | 11.0 | 451 | 0.4103 | {'precision': 0.7154150197628458, 'recall': 0.5709779179810726, 'f1-score': 0.6350877192982457, 'support': 317.0} | {'precision': 0.896774193548387, 'recall': 0.896774193548387, 'f1-score': 0.896774193548387, 'support': 155.0} | {'precision': 0.8592342342342343, 'recall': 0.9270959902794653, 'f1-score': 0.8918760958503799, 'support': 823.0} | {'precision': 0.706850926198177, 'recall': 0.5534069981583793, 'f1-score': 0.6207876049063913, 'support': 4344.0} | {'precision': 0.8774740810556079, 'recall': 0.8807947019867549, 'f1-score': 0.8791312559017942, 'support': 2114.0} | {'precision': 0.8783570300157978, 'recall': 0.9398103917101492, 'f1-score': 0.9080451608322092, 'support': 13607.0} | {'precision': 0.9999095268252963, 'recall': 0.998283804534369, 'f1-score': 0.9990960043391791, 'support': 11071.0} | 0.9000 | {'precision': 0.8477164302343352, 'recall': 0.8238777140283682, 'f1-score': 0.832971147810941, 'support': 32431.0} | {'precision': 0.8948314712991845, 'recall': 0.9000339181647189, 'f1-score': 0.8956333147937184, 'support': 32431.0} |
|
87 |
+
| No log | 12.0 | 492 | 0.3971 | {'precision': 0.6933333333333334, 'recall': 0.6561514195583596, 'f1-score': 0.674230145867099, 'support': 317.0} | {'precision': 0.8805031446540881, 'recall': 0.9032258064516129, 'f1-score': 0.89171974522293, 'support': 155.0} | {'precision': 0.8843861740166865, 'recall': 0.9015795868772782, 'f1-score': 0.8929001203369434, 'support': 823.0} | {'precision': 0.6998045920859794, 'recall': 0.6595303867403315, 'f1-score': 0.6790708698743778, 'support': 4344.0} | {'precision': 0.8721144967682364, 'recall': 0.8935666982024598, 'f1-score': 0.8827102803738317, 'support': 2114.0} | {'precision': 0.9050408620814349, 'recall': 0.919673697361652, 'f1-score': 0.9122986075672522, 'support': 13607.0} | {'precision': 0.9999094694912185, 'recall': 0.9976515219943998, 'f1-score': 0.9987792196048288, 'support': 11071.0} | 0.9066 | {'precision': 0.8478702960615683, 'recall': 0.8473398738837278, 'f1-score': 0.8473869984067518, 'support': 32431.0} | {'precision': 0.9050786104829543, 'recall': 0.9066325429373131, 'f1-score': 0.9057343159521435, 'support': 32431.0} |
|
88 |
+
| 0.1957 | 13.0 | 533 | 0.4370 | {'precision': 0.675, 'recall': 0.6813880126182965, 'f1-score': 0.6781789638932496, 'support': 317.0} | {'precision': 0.8421052631578947, 'recall': 0.9290322580645162, 'f1-score': 0.8834355828220859, 'support': 155.0} | {'precision': 0.895910780669145, 'recall': 0.8784933171324423, 'f1-score': 0.8871165644171779, 'support': 823.0} | {'precision': 0.6602881584871679, 'recall': 0.6751841620626151, 'f1-score': 0.6676530844525382, 'support': 4344.0} | {'precision': 0.8328358208955224, 'recall': 0.9238410596026491, 'f1-score': 0.8759811616954475, 'support': 2114.0} | {'precision': 0.9138385130559109, 'recall': 0.8924818108326596, 'f1-score': 0.9030339083878643, 'support': 13607.0} | {'precision': 0.999909559555033, 'recall': 0.9986451088429229, 'f1-score': 0.9992769342010123, 'support': 11071.0} | 0.8994 | {'precision': 0.8314125851172391, 'recall': 0.8541522470223003, 'f1-score': 0.8420965999813396, 'support': 32431.0} | {'precision': 0.9008461643213939, 'recall': 0.8994172242607382, 'f1-score': 0.8999012883989392, 'support': 32431.0} |
|
89 |
+
| 0.1957 | 14.0 | 574 | 0.4532 | {'precision': 0.6666666666666666, 'recall': 0.694006309148265, 'f1-score': 0.6800618238021638, 'support': 317.0} | {'precision': 0.8875, 'recall': 0.9161290322580645, 'f1-score': 0.9015873015873015, 'support': 155.0} | {'precision': 0.8948019801980198, 'recall': 0.8784933171324423, 'f1-score': 0.8865726548129982, 'support': 823.0} | {'precision': 0.660063034669068, 'recall': 0.6749539594843462, 'f1-score': 0.6674254495788755, 'support': 4344.0} | {'precision': 0.8716998610467809, 'recall': 0.8902554399243141, 'f1-score': 0.8808799438333722, 'support': 2114.0} | {'precision': 0.9096036811637227, 'recall': 0.9007128683765708, 'f1-score': 0.905136442524279, 'support': 13607.0} | {'precision': 0.9999095677337674, 'recall': 0.9987354349200614, 'f1-score': 0.9993221564462921, 'support': 11071.0} | 0.9007 | {'precision': 0.8414635416397179, 'recall': 0.8504694801777236, 'f1-score': 0.845855110369326, 'support': 32431.0} | {'precision': 0.9016799144604528, 'recall': 0.9007431161542968, 'f1-score': 0.9011790708421438, 'support': 32431.0} |
|
90 |
+
| 0.1957 | 15.0 | 615 | 0.4669 | {'precision': 0.6872964169381107, 'recall': 0.6656151419558359, 'f1-score': 0.6762820512820512, 'support': 317.0} | {'precision': 0.8650306748466258, 'recall': 0.9096774193548387, 'f1-score': 0.8867924528301888, 'support': 155.0} | {'precision': 0.8890229191797346, 'recall': 0.8955042527339003, 'f1-score': 0.8922518159806295, 'support': 823.0} | {'precision': 0.6812977099236641, 'recall': 0.6574585635359116, 'f1-score': 0.669165885660731, 'support': 4344.0} | {'precision': 0.8544961590600995, 'recall': 0.8945127719962157, 'f1-score': 0.8740466836145135, 'support': 2114.0} | {'precision': 0.9068645368813509, 'recall': 0.9116631145733813, 'f1-score': 0.9092574946859194, 'support': 13607.0} | {'precision': 0.9999094858797972, 'recall': 0.9978321741486768, 'f1-score': 0.9988697499886975, 'support': 11071.0} | 0.9031 | {'precision': 0.8405597003870547, 'recall': 0.8474662054712514, 'f1-score': 0.8438094477203901, 'support': 32431.0} | {'precision': 0.9022011157514956, 'recall': 0.9030865529894238, 'f1-score': 0.9025778580304222, 'support': 32431.0} |
|
91 |
+
| 0.1957 | 16.0 | 656 | 0.4607 | {'precision': 0.6819672131147541, 'recall': 0.6561514195583596, 'f1-score': 0.6688102893890675, 'support': 317.0} | {'precision': 0.8853503184713376, 'recall': 0.896774193548387, 'f1-score': 0.8910256410256411, 'support': 155.0} | {'precision': 0.8817204301075269, 'recall': 0.8967193195625759, 'f1-score': 0.8891566265060241, 'support': 823.0} | {'precision': 0.6920813924981614, 'recall': 0.6498618784530387, 'f1-score': 0.6703074913926155, 'support': 4344.0} | {'precision': 0.8773408239700374, 'recall': 0.8864711447492905, 'f1-score': 0.8818823529411765, 'support': 2114.0} | {'precision': 0.9018829810259, 'recall': 0.9187183067538767, 'f1-score': 0.9102228047182176, 'support': 13607.0} | {'precision': 0.9999095513748191, 'recall': 0.9985547827657845, 'f1-score': 0.9992317078682154, 'support': 11071.0} | 0.9046 | {'precision': 0.8457503872232196, 'recall': 0.8433215779130447, 'f1-score': 0.8443767019772797, 'support': 32431.0} | {'precision': 0.9029042970267227, 'recall': 0.9046282877493756, 'f1-score': 0.9036387628518002, 'support': 32431.0} |
|
92 |
|
93 |
|
94 |
### Framework versions
|
meta_data/README_s42_e16.md
CHANGED
@@ -17,12 +17,12 @@ model-index:
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: sep_tok_full_labels
|
20 |
-
split: train[
|
21 |
args: sep_tok_full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,17 +32,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B-claim: {'precision': 0.
|
37 |
-
- B-majorclaim: {'precision': 0.
|
38 |
-
- B-premise: {'precision': 0.
|
39 |
-
- I-claim: {'precision': 0.
|
40 |
-
- I-majorclaim: {'precision': 0.
|
41 |
-
- I-premise: {'precision': 0.
|
42 |
-
- O: {'precision':
|
43 |
-
- Accuracy: 0.
|
44 |
-
- Macro avg: {'precision': 0.
|
45 |
-
- Weighted avg: {'precision': 0.
|
46 |
|
47 |
## Model description
|
48 |
|
@@ -71,24 +71,24 @@ The following hyperparameters were used during training:
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
75 |
-
|
76 |
-
| No log | 1.0 | 41 | 0.
|
77 |
-
| No log | 2.0 | 82 | 0.
|
78 |
-
| No log | 3.0 | 123 | 0.2602 | {'precision': 0.
|
79 |
-
| No log | 4.0 | 164 | 0.
|
80 |
-
| No log | 5.0 | 205 | 0.
|
81 |
-
| No log | 6.0 | 246 | 0.
|
82 |
-
| No log | 7.0 | 287 | 0.
|
83 |
-
| No log | 8.0 | 328 | 0.
|
84 |
-
| No log | 9.0 | 369 | 0.
|
85 |
-
| No log | 10.0 | 410 | 0.
|
86 |
-
| No log | 11.0 | 451 | 0.
|
87 |
-
| No log | 12.0 | 492 | 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: sep_tok_full_labels
|
20 |
+
split: train[40%:60%]
|
21 |
args: sep_tok_full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9046282877493756
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4607
|
36 |
+
- B-claim: {'precision': 0.6819672131147541, 'recall': 0.6561514195583596, 'f1-score': 0.6688102893890675, 'support': 317.0}
|
37 |
+
- B-majorclaim: {'precision': 0.8853503184713376, 'recall': 0.896774193548387, 'f1-score': 0.8910256410256411, 'support': 155.0}
|
38 |
+
- B-premise: {'precision': 0.8817204301075269, 'recall': 0.8967193195625759, 'f1-score': 0.8891566265060241, 'support': 823.0}
|
39 |
+
- I-claim: {'precision': 0.6920813924981614, 'recall': 0.6498618784530387, 'f1-score': 0.6703074913926155, 'support': 4344.0}
|
40 |
+
- I-majorclaim: {'precision': 0.8773408239700374, 'recall': 0.8864711447492905, 'f1-score': 0.8818823529411765, 'support': 2114.0}
|
41 |
+
- I-premise: {'precision': 0.9018829810259, 'recall': 0.9187183067538767, 'f1-score': 0.9102228047182176, 'support': 13607.0}
|
42 |
+
- O: {'precision': 0.9999095513748191, 'recall': 0.9985547827657845, 'f1-score': 0.9992317078682154, 'support': 11071.0}
|
43 |
+
- Accuracy: 0.9046
|
44 |
+
- Macro avg: {'precision': 0.8457503872232196, 'recall': 0.8433215779130447, 'f1-score': 0.8443767019772797, 'support': 32431.0}
|
45 |
+
- Weighted avg: {'precision': 0.9029042970267227, 'recall': 0.9046282877493756, 'f1-score': 0.9036387628518002, 'support': 32431.0}
|
46 |
|
47 |
## Model description
|
48 |
|
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
75 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
76 |
+
| No log | 1.0 | 41 | 0.4118 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 317.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 155.0} | {'precision': 0.6759259259259259, 'recall': 0.9756986634264885, 'f1-score': 0.798607657881651, 'support': 823.0} | {'precision': 0.5029573299535277, 'recall': 0.5481123388581952, 'f1-score': 0.5245648821326283, 'support': 4344.0} | {'precision': 0.6704953338119167, 'recall': 0.44181646168401134, 'f1-score': 0.5326489877388081, 'support': 2114.0} | {'precision': 0.8756645636917842, 'recall': 0.9078415521422797, 'f1-score': 0.8914627985855524, 'support': 13607.0} | {'precision': 0.9967299482241803, 'recall': 0.9911480444404299, 'f1-score': 0.9939311594202898, 'support': 11071.0} | 0.8462 | {'precision': 0.5316818716581907, 'recall': 0.5520881515073436, 'f1-score': 0.5344593551084185, 'support': 32431.0} | {'precision': 0.835883129998383, 'recall': 0.8462273750423978, 'f1-score': 0.8385782145723601, 'support': 32431.0} |
|
77 |
+
| No log | 2.0 | 82 | 0.3001 | {'precision': 0.43, 'recall': 0.27129337539432175, 'f1-score': 0.3326885880077369, 'support': 317.0} | {'precision': 0.896551724137931, 'recall': 0.16774193548387098, 'f1-score': 0.28260869565217395, 'support': 155.0} | {'precision': 0.76981852913085, 'recall': 0.9793438639125152, 'f1-score': 0.8620320855614974, 'support': 823.0} | {'precision': 0.6927835051546392, 'recall': 0.46408839779005523, 'f1-score': 0.5558312655086849, 'support': 4344.0} | {'precision': 0.7640091116173121, 'recall': 0.793282876064333, 'f1-score': 0.7783708517057322, 'support': 2114.0} | {'precision': 0.8649596400688103, 'recall': 0.9607554934959948, 'f1-score': 0.9103443473416662, 'support': 13607.0} | {'precision': 0.9998171177761521, 'recall': 0.9876253274320296, 'f1-score': 0.9936838278729495, 'support': 11071.0} | 0.8824 | {'precision': 0.773991375412242, 'recall': 0.6605901813675886, 'f1-score': 0.6736513802357773, 'support': 32431.0} | {'precision': 0.8748383987044155, 'recall': 0.8824273072060683, 'f1-score': 0.8728332529732901, 'support': 32431.0} |
|
78 |
+
| No log | 3.0 | 123 | 0.2602 | {'precision': 0.6417322834645669, 'recall': 0.5141955835962145, 'f1-score': 0.5709281961471102, 'support': 317.0} | {'precision': 0.8357142857142857, 'recall': 0.7548387096774194, 'f1-score': 0.7932203389830508, 'support': 155.0} | {'precision': 0.8512304250559284, 'recall': 0.9246658566221142, 'f1-score': 0.8864298194525335, 'support': 823.0} | {'precision': 0.669375175119081, 'recall': 0.5499539594843462, 'f1-score': 0.6038165044862884, 'support': 4344.0} | {'precision': 0.7790169351507642, 'recall': 0.8921475875118259, 'f1-score': 0.831753031973539, 'support': 2114.0} | {'precision': 0.890888479523877, 'recall': 0.9240831924744617, 'f1-score': 0.9071822805815085, 'support': 13607.0} | {'precision': 0.9996376483377117, 'recall': 0.9967482612230151, 'f1-score': 0.9981908638625057, 'support': 11071.0} | 0.8919 | {'precision': 0.8096564617666021, 'recall': 0.7938047357984852, 'f1-score': 0.7987887193552196, 'support': 32431.0} | {'precision': 0.8873436833652745, 'recall': 0.8918935586321729, 'f1-score': 0.8883404854276872, 'support': 32431.0} |
|
79 |
+
| No log | 4.0 | 164 | 0.2530 | {'precision': 0.6433333333333333, 'recall': 0.6088328075709779, 'f1-score': 0.6256077795786061, 'support': 317.0} | {'precision': 0.8284023668639053, 'recall': 0.9032258064516129, 'f1-score': 0.8641975308641976, 'support': 155.0} | {'precision': 0.8792270531400966, 'recall': 0.8845686512758202, 'f1-score': 0.8818897637795277, 'support': 823.0} | {'precision': 0.6606835505286452, 'recall': 0.6185543278084714, 'f1-score': 0.6389252169777673, 'support': 4344.0} | {'precision': 0.8184976118106817, 'recall': 0.8916745506149479, 'f1-score': 0.8535204890196967, 'support': 2114.0} | {'precision': 0.9034563220067084, 'recall': 0.9105607407951789, 'f1-score': 0.9069946195234434, 'support': 13607.0} | {'precision': 1.0, 'recall': 0.9981031523800922, 'f1-score': 0.9990506758283985, 'support': 11071.0} | 0.8965 | {'precision': 0.8190857482404815, 'recall': 0.830788576699586, 'f1-score': 0.8243122965102339, 'support': 32431.0} | {'precision': 0.8948409351137605, 'recall': 0.8964570935216305, 'f1-score': 0.8954353191480889, 'support': 32431.0} |
|
80 |
+
| No log | 5.0 | 205 | 0.2600 | {'precision': 0.7109375, 'recall': 0.5741324921135647, 'f1-score': 0.6352530541012217, 'support': 317.0} | {'precision': 0.8896103896103896, 'recall': 0.8838709677419355, 'f1-score': 0.8867313915857605, 'support': 155.0} | {'precision': 0.863431151241535, 'recall': 0.9295261239368166, 'f1-score': 0.8952603861907549, 'support': 823.0} | {'precision': 0.7121212121212122, 'recall': 0.6275322283609577, 'f1-score': 0.667156142927068, 'support': 4344.0} | {'precision': 0.8813799621928167, 'recall': 0.8822138126773889, 'f1-score': 0.8817966903073287, 'support': 2114.0} | {'precision': 0.8983086830372939, 'recall': 0.9329021827000809, 'f1-score': 0.9152786790684261, 'support': 13607.0} | {'precision': 1.0, 'recall': 0.9990064131514769, 'f1-score': 0.9995029596493606, 'support': 11071.0} | 0.9074 | {'precision': 0.8508269854576067, 'recall': 0.8327406029546031, 'f1-score': 0.8401399005471315, 'support': 32431.0} | {'precision': 0.90422246218063, 'recall': 0.907434245012488, 'f1-score': 0.9052313102348954, 'support': 32431.0} |
|
81 |
+
| No log | 6.0 | 246 | 0.2758 | {'precision': 0.7026022304832714, 'recall': 0.5962145110410094, 'f1-score': 0.6450511945392492, 'support': 317.0} | {'precision': 0.9047619047619048, 'recall': 0.8580645161290322, 'f1-score': 0.880794701986755, 'support': 155.0} | {'precision': 0.8660612939841089, 'recall': 0.9270959902794653, 'f1-score': 0.8955399061032863, 'support': 823.0} | {'precision': 0.7183248866364363, 'recall': 0.6199355432780848, 'f1-score': 0.6655134066477203, 'support': 4344.0} | {'precision': 0.8960591133004926, 'recall': 0.8604541154210028, 'f1-score': 0.8778957528957528, 'support': 2114.0} | {'precision': 0.8941776752638568, 'recall': 0.9401778496362166, 'f1-score': 0.9166009887511642, 'support': 13607.0} | {'precision': 1.0, 'recall': 0.9979225002258152, 'f1-score': 0.9989601699896017, 'support': 11071.0} | 0.9077 | {'precision': 0.8545695863471529, 'recall': 0.8285521465729466, 'f1-score': 0.8400508744162184, 'support': 32431.0} | {'precision': 0.904334721335495, 'recall': 0.9077117572692794, 'f1-score': 0.9052009899846191, 'support': 32431.0} |
|
82 |
+
| No log | 7.0 | 287 | 0.2923 | {'precision': 0.6936619718309859, 'recall': 0.6214511041009464, 'f1-score': 0.6555740432612313, 'support': 317.0} | {'precision': 0.910958904109589, 'recall': 0.8580645161290322, 'f1-score': 0.883720930232558, 'support': 155.0} | {'precision': 0.8688147295742232, 'recall': 0.9173754556500607, 'f1-score': 0.892434988179669, 'support': 823.0} | {'precision': 0.6873800383877159, 'recall': 0.6595303867403315, 'f1-score': 0.6731672932330828, 'support': 4344.0} | {'precision': 0.9308342133051742, 'recall': 0.8339640491958372, 'f1-score': 0.8797405189620758, 'support': 2114.0} | {'precision': 0.8992862241256245, 'recall': 0.925920482104799, 'f1-score': 0.912409023427599, 'support': 13607.0} | {'precision': 1.0, 'recall': 0.9990064131514769, 'f1-score': 0.9995029596493606, 'support': 11071.0} | 0.9057 | {'precision': 0.8558480116190447, 'recall': 0.8307589152960692, 'f1-score': 0.8423642509922252, 'support': 32431.0} | {'precision': 0.9046120706425255, 'recall': 0.9056766673861429, 'f1-score': 0.9048109752434238, 'support': 32431.0} |
|
83 |
+
| No log | 8.0 | 328 | 0.3232 | {'precision': 0.7061224489795919, 'recall': 0.5457413249211357, 'f1-score': 0.6156583629893239, 'support': 317.0} | {'precision': 0.9084967320261438, 'recall': 0.896774193548387, 'f1-score': 0.9025974025974025, 'support': 155.0} | {'precision': 0.8496659242761693, 'recall': 0.9270959902794653, 'f1-score': 0.8866937826844857, 'support': 823.0} | {'precision': 0.7257503949447077, 'recall': 0.5287753222836096, 'f1-score': 0.6117991743241443, 'support': 4344.0} | {'precision': 0.8606143970655663, 'recall': 0.8878902554399243, 'f1-score': 0.8740395809080327, 'support': 2114.0} | {'precision': 0.8743462609522515, 'recall': 0.9460571764532961, 'f1-score': 0.9087892693258031, 'support': 13607.0} | {'precision': 0.9999096331104284, 'recall': 0.9994580435371692, 'f1-score': 0.999683787324389, 'support': 11071.0} | 0.9000 | {'precision': 0.8464151130506943, 'recall': 0.8188274723518553, 'f1-score': 0.8284659085933688, 'support': 32431.0} | {'precision': 0.8943036149810097, 'recall': 0.8999722487743209, 'f1-score': 0.8943167144432094, 'support': 32431.0} |
|
84 |
+
| No log | 9.0 | 369 | 0.3633 | {'precision': 0.7035573122529645, 'recall': 0.5615141955835962, 'f1-score': 0.6245614035087719, 'support': 317.0} | {'precision': 0.9060402684563759, 'recall': 0.8709677419354839, 'f1-score': 0.8881578947368421, 'support': 155.0} | {'precision': 0.8547486033519553, 'recall': 0.9295261239368166, 'f1-score': 0.890570430733411, 'support': 823.0} | {'precision': 0.7197630922693267, 'recall': 0.5315377532228361, 'f1-score': 0.6114936440677966, 'support': 4344.0} | {'precision': 0.8848780487804878, 'recall': 0.8580889309366131, 'f1-score': 0.8712776176753123, 'support': 2114.0} | {'precision': 0.8723188992310805, 'recall': 0.9504666715661056, 'f1-score': 0.9097175816832553, 'support': 13607.0} | {'precision': 0.9999095022624435, 'recall': 0.9980128263029536, 'f1-score': 0.9989602640025315, 'support': 11071.0} | 0.8998 | {'precision': 0.8487451038006621, 'recall': 0.8143020347834865, 'f1-score': 0.8278198337725601, 'support': 32431.0} | {'precision': 0.8943247645610162, 'recall': 0.8998489099935247, 'f1-score': 0.8943546419605405, 'support': 32431.0} |
|
85 |
+
| No log | 10.0 | 410 | 0.3689 | {'precision': 0.6383561643835617, 'recall': 0.7350157728706624, 'f1-score': 0.6832844574780059, 'support': 317.0} | {'precision': 0.879746835443038, 'recall': 0.896774193548387, 'f1-score': 0.8881789137380192, 'support': 155.0} | {'precision': 0.9108527131782945, 'recall': 0.8566221142162819, 'f1-score': 0.8829054477144646, 'support': 823.0} | {'precision': 0.6362704918032787, 'recall': 0.7147790055248618, 'f1-score': 0.6732437120555073, 'support': 4344.0} | {'precision': 0.8423403305046896, 'recall': 0.8921475875118259, 'f1-score': 0.8665288306914771, 'support': 2114.0} | {'precision': 0.9262117937635073, 'recall': 0.8818990225619167, 'f1-score': 0.9035124044723865, 'support': 13607.0} | {'precision': 1.0, 'recall': 0.9989160870743383, 'f1-score': 0.9994577496610935, 'support': 11071.0} | 0.8981 | {'precision': 0.8333969041537671, 'recall': 0.8537362547583249, 'f1-score': 0.8424445022587078, 'support': 32431.0} | {'precision': 0.9036718509873083, 'recall': 0.8981221670623786, 'f1-score': 0.9002621798749209, 'support': 32431.0} |
|
86 |
+
| No log | 11.0 | 451 | 0.4103 | {'precision': 0.7154150197628458, 'recall': 0.5709779179810726, 'f1-score': 0.6350877192982457, 'support': 317.0} | {'precision': 0.896774193548387, 'recall': 0.896774193548387, 'f1-score': 0.896774193548387, 'support': 155.0} | {'precision': 0.8592342342342343, 'recall': 0.9270959902794653, 'f1-score': 0.8918760958503799, 'support': 823.0} | {'precision': 0.706850926198177, 'recall': 0.5534069981583793, 'f1-score': 0.6207876049063913, 'support': 4344.0} | {'precision': 0.8774740810556079, 'recall': 0.8807947019867549, 'f1-score': 0.8791312559017942, 'support': 2114.0} | {'precision': 0.8783570300157978, 'recall': 0.9398103917101492, 'f1-score': 0.9080451608322092, 'support': 13607.0} | {'precision': 0.9999095268252963, 'recall': 0.998283804534369, 'f1-score': 0.9990960043391791, 'support': 11071.0} | 0.9000 | {'precision': 0.8477164302343352, 'recall': 0.8238777140283682, 'f1-score': 0.832971147810941, 'support': 32431.0} | {'precision': 0.8948314712991845, 'recall': 0.9000339181647189, 'f1-score': 0.8956333147937184, 'support': 32431.0} |
|
87 |
+
| No log | 12.0 | 492 | 0.3971 | {'precision': 0.6933333333333334, 'recall': 0.6561514195583596, 'f1-score': 0.674230145867099, 'support': 317.0} | {'precision': 0.8805031446540881, 'recall': 0.9032258064516129, 'f1-score': 0.89171974522293, 'support': 155.0} | {'precision': 0.8843861740166865, 'recall': 0.9015795868772782, 'f1-score': 0.8929001203369434, 'support': 823.0} | {'precision': 0.6998045920859794, 'recall': 0.6595303867403315, 'f1-score': 0.6790708698743778, 'support': 4344.0} | {'precision': 0.8721144967682364, 'recall': 0.8935666982024598, 'f1-score': 0.8827102803738317, 'support': 2114.0} | {'precision': 0.9050408620814349, 'recall': 0.919673697361652, 'f1-score': 0.9122986075672522, 'support': 13607.0} | {'precision': 0.9999094694912185, 'recall': 0.9976515219943998, 'f1-score': 0.9987792196048288, 'support': 11071.0} | 0.9066 | {'precision': 0.8478702960615683, 'recall': 0.8473398738837278, 'f1-score': 0.8473869984067518, 'support': 32431.0} | {'precision': 0.9050786104829543, 'recall': 0.9066325429373131, 'f1-score': 0.9057343159521435, 'support': 32431.0} |
|
88 |
+
| 0.1957 | 13.0 | 533 | 0.4370 | {'precision': 0.675, 'recall': 0.6813880126182965, 'f1-score': 0.6781789638932496, 'support': 317.0} | {'precision': 0.8421052631578947, 'recall': 0.9290322580645162, 'f1-score': 0.8834355828220859, 'support': 155.0} | {'precision': 0.895910780669145, 'recall': 0.8784933171324423, 'f1-score': 0.8871165644171779, 'support': 823.0} | {'precision': 0.6602881584871679, 'recall': 0.6751841620626151, 'f1-score': 0.6676530844525382, 'support': 4344.0} | {'precision': 0.8328358208955224, 'recall': 0.9238410596026491, 'f1-score': 0.8759811616954475, 'support': 2114.0} | {'precision': 0.9138385130559109, 'recall': 0.8924818108326596, 'f1-score': 0.9030339083878643, 'support': 13607.0} | {'precision': 0.999909559555033, 'recall': 0.9986451088429229, 'f1-score': 0.9992769342010123, 'support': 11071.0} | 0.8994 | {'precision': 0.8314125851172391, 'recall': 0.8541522470223003, 'f1-score': 0.8420965999813396, 'support': 32431.0} | {'precision': 0.9008461643213939, 'recall': 0.8994172242607382, 'f1-score': 0.8999012883989392, 'support': 32431.0} |
|
89 |
+
| 0.1957 | 14.0 | 574 | 0.4532 | {'precision': 0.6666666666666666, 'recall': 0.694006309148265, 'f1-score': 0.6800618238021638, 'support': 317.0} | {'precision': 0.8875, 'recall': 0.9161290322580645, 'f1-score': 0.9015873015873015, 'support': 155.0} | {'precision': 0.8948019801980198, 'recall': 0.8784933171324423, 'f1-score': 0.8865726548129982, 'support': 823.0} | {'precision': 0.660063034669068, 'recall': 0.6749539594843462, 'f1-score': 0.6674254495788755, 'support': 4344.0} | {'precision': 0.8716998610467809, 'recall': 0.8902554399243141, 'f1-score': 0.8808799438333722, 'support': 2114.0} | {'precision': 0.9096036811637227, 'recall': 0.9007128683765708, 'f1-score': 0.905136442524279, 'support': 13607.0} | {'precision': 0.9999095677337674, 'recall': 0.9987354349200614, 'f1-score': 0.9993221564462921, 'support': 11071.0} | 0.9007 | {'precision': 0.8414635416397179, 'recall': 0.8504694801777236, 'f1-score': 0.845855110369326, 'support': 32431.0} | {'precision': 0.9016799144604528, 'recall': 0.9007431161542968, 'f1-score': 0.9011790708421438, 'support': 32431.0} |
|
90 |
+
| 0.1957 | 15.0 | 615 | 0.4669 | {'precision': 0.6872964169381107, 'recall': 0.6656151419558359, 'f1-score': 0.6762820512820512, 'support': 317.0} | {'precision': 0.8650306748466258, 'recall': 0.9096774193548387, 'f1-score': 0.8867924528301888, 'support': 155.0} | {'precision': 0.8890229191797346, 'recall': 0.8955042527339003, 'f1-score': 0.8922518159806295, 'support': 823.0} | {'precision': 0.6812977099236641, 'recall': 0.6574585635359116, 'f1-score': 0.669165885660731, 'support': 4344.0} | {'precision': 0.8544961590600995, 'recall': 0.8945127719962157, 'f1-score': 0.8740466836145135, 'support': 2114.0} | {'precision': 0.9068645368813509, 'recall': 0.9116631145733813, 'f1-score': 0.9092574946859194, 'support': 13607.0} | {'precision': 0.9999094858797972, 'recall': 0.9978321741486768, 'f1-score': 0.9988697499886975, 'support': 11071.0} | 0.9031 | {'precision': 0.8405597003870547, 'recall': 0.8474662054712514, 'f1-score': 0.8438094477203901, 'support': 32431.0} | {'precision': 0.9022011157514956, 'recall': 0.9030865529894238, 'f1-score': 0.9025778580304222, 'support': 32431.0} |
|
91 |
+
| 0.1957 | 16.0 | 656 | 0.4607 | {'precision': 0.6819672131147541, 'recall': 0.6561514195583596, 'f1-score': 0.6688102893890675, 'support': 317.0} | {'precision': 0.8853503184713376, 'recall': 0.896774193548387, 'f1-score': 0.8910256410256411, 'support': 155.0} | {'precision': 0.8817204301075269, 'recall': 0.8967193195625759, 'f1-score': 0.8891566265060241, 'support': 823.0} | {'precision': 0.6920813924981614, 'recall': 0.6498618784530387, 'f1-score': 0.6703074913926155, 'support': 4344.0} | {'precision': 0.8773408239700374, 'recall': 0.8864711447492905, 'f1-score': 0.8818823529411765, 'support': 2114.0} | {'precision': 0.9018829810259, 'recall': 0.9187183067538767, 'f1-score': 0.9102228047182176, 'support': 13607.0} | {'precision': 0.9999095513748191, 'recall': 0.9985547827657845, 'f1-score': 0.9992317078682154, 'support': 11071.0} | 0.9046 | {'precision': 0.8457503872232196, 'recall': 0.8433215779130447, 'f1-score': 0.8443767019772797, 'support': 32431.0} | {'precision': 0.9029042970267227, 'recall': 0.9046282877493756, 'f1-score': 0.9036387628518002, 'support': 32431.0} |
|
92 |
|
93 |
|
94 |
### Framework versions
|
meta_data/meta_s42_e16_cvi2.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"B-Claim": {"precision": 0.
|
|
|
1 |
+
{"B-Claim": {"precision": 0.6819672131147541, "recall": 0.6561514195583596, "f1-score": 0.6688102893890675, "support": 317.0}, "B-MajorClaim": {"precision": 0.8853503184713376, "recall": 0.896774193548387, "f1-score": 0.8910256410256411, "support": 155.0}, "B-Premise": {"precision": 0.8817204301075269, "recall": 0.8967193195625759, "f1-score": 0.8891566265060241, "support": 823.0}, "I-Claim": {"precision": 0.6920813924981614, "recall": 0.6498618784530387, "f1-score": 0.6703074913926155, "support": 4344.0}, "I-MajorClaim": {"precision": 0.8773408239700374, "recall": 0.8864711447492905, "f1-score": 0.8818823529411765, "support": 2114.0}, "I-Premise": {"precision": 0.9018829810259, "recall": 0.9187183067538767, "f1-score": 0.9102228047182176, "support": 13607.0}, "O": {"precision": 0.9999095513748191, "recall": 0.9985547827657845, "f1-score": 0.9992317078682154, "support": 11071.0}, "accuracy": 0.9046282877493756, "macro avg": {"precision": 0.8457503872232196, "recall": 0.8433215779130447, "f1-score": 0.8443767019772797, "support": 32431.0}, "weighted avg": {"precision": 0.9029042970267227, "recall": 0.9046282877493756, "f1-score": 0.9036387628518002, "support": 32431.0}}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592330980
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a962bbdbedd99d2f964c8457a0dc4d8720503e17927b0f0d97e6a6cd1bb67ee5
|
3 |
size 592330980
|