Theoreticallyhugo
commited on
Commit
•
1c97c24
1
Parent(s):
562eea6
trainer: training complete at 2024-02-19 21:15:06.553139.
Browse files- README.md +22 -21
- meta_data/README_s42_e7.md +89 -0
- model.safetensors +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,17 +32,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B-claim: {'precision': 0.
|
37 |
-
- B-majorclaim: {'precision': 0.
|
38 |
-
- B-premise: {'precision': 0.
|
39 |
-
- I-claim: {'precision': 0.
|
40 |
-
- I-majorclaim: {'precision': 0.
|
41 |
-
- I-premise: {'precision': 0.
|
42 |
-
- O: {'precision':
|
43 |
-
- Accuracy: 0.
|
44 |
-
- Macro avg: {'precision': 0.
|
45 |
-
- Weighted avg: {'precision': 0.
|
46 |
|
47 |
## Model description
|
48 |
|
@@ -67,18 +67,19 @@ The following hyperparameters were used during training:
|
|
67 |
- seed: 42
|
68 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
69 |
- lr_scheduler_type: linear
|
70 |
-
- num_epochs:
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
75 |
-
|
76 |
-
| No log | 1.0 | 41 | 0.
|
77 |
-
| No log | 2.0 | 82 | 0.
|
78 |
-
| No log | 3.0 | 123 | 0.
|
79 |
-
| No log | 4.0 | 164 | 0.
|
80 |
-
| No log | 5.0 | 205 | 0.
|
81 |
-
| No log | 6.0 | 246 | 0.
|
|
|
82 |
|
83 |
|
84 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8942951343790588
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.2899
|
36 |
+
- B-claim: {'precision': 0.657258064516129, 'recall': 0.5884476534296029, 'f1-score': 0.620952380952381, 'support': 277.0}
|
37 |
+
- B-majorclaim: {'precision': 0.8380281690140845, 'recall': 0.8439716312056738, 'f1-score': 0.8409893992932863, 'support': 141.0}
|
38 |
+
- B-premise: {'precision': 0.8622754491017964, 'recall': 0.8985959438377535, 'f1-score': 0.880061115355233, 'support': 641.0}
|
39 |
+
- I-claim: {'precision': 0.6403553299492386, 'recall': 0.6185339544005883, 'f1-score': 0.6292555181444071, 'support': 4079.0}
|
40 |
+
- I-majorclaim: {'precision': 0.8763931104356636, 'recall': 0.8476237138657521, 'f1-score': 0.8617683686176836, 'support': 2041.0}
|
41 |
+
- I-premise: {'precision': 0.8874882085584427, 'recall': 0.903448275862069, 'f1-score': 0.8953971275307147, 'support': 11455.0}
|
42 |
+
- O: {'precision': 0.9999122345093909, 'recall': 1.0, 'f1-score': 0.9999561153289156, 'support': 11393.0}
|
43 |
+
- Accuracy: 0.8943
|
44 |
+
- Macro avg: {'precision': 0.8231015094406778, 'recall': 0.8143744532287771, 'f1-score': 0.8183400036032316, 'support': 30027.0}
|
45 |
+
- Weighted avg: {'precision': 0.8929245767023277, 'recall': 0.8942951343790588, 'f1-score': 0.8935151399218458, 'support': 30027.0}
|
46 |
|
47 |
## Model description
|
48 |
|
|
|
67 |
- seed: 42
|
68 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
69 |
- lr_scheduler_type: linear
|
70 |
+
- num_epochs: 7
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
75 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
76 |
+
| No log | 1.0 | 41 | 0.4221 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.7233782129742962, 'recall': 0.921996879875195, 'f1-score': 0.8106995884773661, 'support': 641.0} | {'precision': 0.5306122448979592, 'recall': 0.26771267467516546, 'f1-score': 0.35587420563793387, 'support': 4079.0} | {'precision': 0.5553590378493102, 'recall': 0.7692307692307693, 'f1-score': 0.6450287592440428, 'support': 2041.0} | {'precision': 0.8375491849353569, 'recall': 0.9105194238323876, 'f1-score': 0.8725112932909486, 'support': 11455.0} | {'precision': 0.9565363881401617, 'recall': 0.9967523918195383, 'f1-score': 0.9762303889963465, 'support': 11393.0} | 0.8339 | {'precision': 0.5147764383995834, 'recall': 0.5523160199190079, 'f1-score': 0.5229063193780912, 'support': 30027.0} | {'precision': 0.8077225683958144, 'recall': 0.8338828387784327, 'f1-score': 0.8127546110204618, 'support': 30027.0} |
|
77 |
+
| No log | 2.0 | 82 | 0.2939 | {'precision': 0.3915094339622642, 'recall': 0.2996389891696751, 'f1-score': 0.3394683026584867, 'support': 277.0} | {'precision': 0.9166666666666666, 'recall': 0.07801418439716312, 'f1-score': 0.1437908496732026, 'support': 141.0} | {'precision': 0.7590361445783133, 'recall': 0.982839313572543, 'f1-score': 0.8565601631543168, 'support': 641.0} | {'precision': 0.5572158867479355, 'recall': 0.6947781318950723, 'f1-score': 0.6184397163120567, 'support': 4079.0} | {'precision': 0.8706896551724138, 'recall': 0.6927976482116609, 'f1-score': 0.7716234652114597, 'support': 2041.0} | {'precision': 0.9044070291655166, 'recall': 0.8581405499781755, 'f1-score': 0.8806665472137609, 'support': 11455.0} | {'precision': 0.9999122345093909, 'recall': 1.0, 'f1-score': 0.9999561153289156, 'support': 11393.0} | 0.8724 | {'precision': 0.7713481501146429, 'recall': 0.6580298310320414, 'f1-score': 0.6586435942217427, 'support': 30027.0} | {'precision': 0.8834110659403355, 'recall': 0.8723815232957005, 'f1-score': 0.8739266896403793, 'support': 30027.0} |
|
78 |
+
| No log | 3.0 | 123 | 0.2914 | {'precision': 0.5445026178010471, 'recall': 0.37545126353790614, 'f1-score': 0.4444444444444445, 'support': 277.0} | {'precision': 0.8777777777777778, 'recall': 0.5602836879432624, 'f1-score': 0.683982683982684, 'support': 141.0} | {'precision': 0.7904269081500647, 'recall': 0.953198127925117, 'f1-score': 0.8642149929278642, 'support': 641.0} | {'precision': 0.6203389830508474, 'recall': 0.3589114979161559, 'f1-score': 0.45472899518558785, 'support': 4079.0} | {'precision': 0.8564718162839249, 'recall': 0.8040176384125429, 'f1-score': 0.8294162244124337, 'support': 2041.0} | {'precision': 0.8237107201924523, 'recall': 0.9565255347010039, 'f1-score': 0.8851637920588118, 'support': 11455.0} | {'precision': 0.9997367266344888, 'recall': 0.9999122268059335, 'f1-score': 0.9998244690187819, 'support': 11393.0} | 0.8741 | {'precision': 0.7875665071272291, 'recall': 0.7154714253202744, 'f1-score': 0.737396514575801, 'support': 30027.0} | {'precision': 0.8620670081983853, 'recall': 0.8741466013920804, 'f1-score': 0.8609499443491488, 'support': 30027.0} |
|
79 |
+
| No log | 4.0 | 164 | 0.2585 | {'precision': 0.6327272727272727, 'recall': 0.628158844765343, 'f1-score': 0.6304347826086956, 'support': 277.0} | {'precision': 0.8308823529411765, 'recall': 0.8014184397163121, 'f1-score': 0.8158844765342961, 'support': 141.0} | {'precision': 0.874806800618238, 'recall': 0.8829953198127926, 'f1-score': 0.8788819875776397, 'support': 641.0} | {'precision': 0.6304878048780488, 'recall': 0.6337337582740867, 'f1-score': 0.6321066145005502, 'support': 4079.0} | {'precision': 0.8236389018147976, 'recall': 0.8672219500244978, 'f1-score': 0.8448687350835322, 'support': 2041.0} | {'precision': 0.9004061451527459, 'recall': 0.8902662592754256, 'f1-score': 0.8953074930863438, 'support': 11455.0} | {'precision': 0.9999122345093909, 'recall': 1.0, 'f1-score': 0.9999561153289156, 'support': 11393.0} | 0.8925 | {'precision': 0.8132659303773815, 'recall': 0.8148277959812082, 'f1-score': 0.8139200292457104, 'support': 30027.0} | {'precision': 0.892934034725354, 'recall': 0.8924967529223699, 'f1-score': 0.8926639632367819, 'support': 30027.0} |
|
80 |
+
| No log | 5.0 | 205 | 0.2866 | {'precision': 0.6352941176470588, 'recall': 0.5848375451263538, 'f1-score': 0.6090225563909775, 'support': 277.0} | {'precision': 0.8382352941176471, 'recall': 0.8085106382978723, 'f1-score': 0.8231046931407943, 'support': 141.0} | {'precision': 0.8605697151424287, 'recall': 0.8954758190327613, 'f1-score': 0.8776758409785932, 'support': 641.0} | {'precision': 0.6380439868975198, 'recall': 0.668546212306938, 'f1-score': 0.6529390638094098, 'support': 4079.0} | {'precision': 0.8673106253177427, 'recall': 0.8358647721705047, 'f1-score': 0.8512974051896207, 'support': 2041.0} | {'precision': 0.9037239675255913, 'recall': 0.8940200785683108, 'f1-score': 0.8988458331504806, 'support': 11455.0} | {'precision': 0.9997367497367498, 'recall': 1.0, 'f1-score': 0.9998683575409189, 'support': 11393.0} | 0.8964 | {'precision': 0.8204163509121054, 'recall': 0.8124650093575345, 'f1-score': 0.8161076786001136, 'support': 30027.0} | {'precision': 0.8978823752306275, 'recall': 0.8964265494388384, 'f1-score': 0.8970580772435964, 'support': 30027.0} |
|
81 |
+
| No log | 6.0 | 246 | 0.2945 | {'precision': 0.6460176991150443, 'recall': 0.5270758122743683, 'f1-score': 0.58051689860835, 'support': 277.0} | {'precision': 0.8646616541353384, 'recall': 0.8156028368794326, 'f1-score': 0.8394160583941607, 'support': 141.0} | {'precision': 0.8371428571428572, 'recall': 0.9141965678627145, 'f1-score': 0.8739746457867263, 'support': 641.0} | {'precision': 0.6458272753707474, 'recall': 0.5444962000490317, 'f1-score': 0.5908486299547753, 'support': 4079.0} | {'precision': 0.8827444956477215, 'recall': 0.8446839784419402, 'f1-score': 0.8632949424136204, 'support': 2041.0} | {'precision': 0.8662890913568086, 'recall': 0.9213443910955914, 'f1-score': 0.8929689483035789, 'support': 11455.0} | {'precision': 0.9999122268059335, 'recall': 0.9999122268059335, 'f1-score': 0.9999122268059335, 'support': 11393.0} | 0.8905 | {'precision': 0.8203707570820643, 'recall': 0.7953302876298588, 'f1-score': 0.805847478609592, 'support': 30027.0} | {'precision': 0.8854972285164366, 'recall': 0.8904652479435174, 'f1-score': 0.886948227760569, 'support': 30027.0} |
|
82 |
+
| No log | 7.0 | 287 | 0.2899 | {'precision': 0.657258064516129, 'recall': 0.5884476534296029, 'f1-score': 0.620952380952381, 'support': 277.0} | {'precision': 0.8380281690140845, 'recall': 0.8439716312056738, 'f1-score': 0.8409893992932863, 'support': 141.0} | {'precision': 0.8622754491017964, 'recall': 0.8985959438377535, 'f1-score': 0.880061115355233, 'support': 641.0} | {'precision': 0.6403553299492386, 'recall': 0.6185339544005883, 'f1-score': 0.6292555181444071, 'support': 4079.0} | {'precision': 0.8763931104356636, 'recall': 0.8476237138657521, 'f1-score': 0.8617683686176836, 'support': 2041.0} | {'precision': 0.8874882085584427, 'recall': 0.903448275862069, 'f1-score': 0.8953971275307147, 'support': 11455.0} | {'precision': 0.9999122345093909, 'recall': 1.0, 'f1-score': 0.9999561153289156, 'support': 11393.0} | 0.8943 | {'precision': 0.8231015094406778, 'recall': 0.8143744532287771, 'f1-score': 0.8183400036032316, 'support': 30027.0} | {'precision': 0.8929245767023277, 'recall': 0.8942951343790588, 'f1-score': 0.8935151399218458, 'support': 30027.0} |
|
83 |
|
84 |
|
85 |
### Framework versions
|
meta_data/README_s42_e7.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: allenai/longformer-base-4096
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- essays_su_g
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: longformer-sep_tok_full_labels
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Token Classification
|
14 |
+
type: token-classification
|
15 |
+
dataset:
|
16 |
+
name: essays_su_g
|
17 |
+
type: essays_su_g
|
18 |
+
config: sep_tok_full_labels
|
19 |
+
split: test
|
20 |
+
args: sep_tok_full_labels
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.8942951343790588
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# longformer-sep_tok_full_labels
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2899
|
35 |
+
- B-claim: {'precision': 0.657258064516129, 'recall': 0.5884476534296029, 'f1-score': 0.620952380952381, 'support': 277.0}
|
36 |
+
- B-majorclaim: {'precision': 0.8380281690140845, 'recall': 0.8439716312056738, 'f1-score': 0.8409893992932863, 'support': 141.0}
|
37 |
+
- B-premise: {'precision': 0.8622754491017964, 'recall': 0.8985959438377535, 'f1-score': 0.880061115355233, 'support': 641.0}
|
38 |
+
- I-claim: {'precision': 0.6403553299492386, 'recall': 0.6185339544005883, 'f1-score': 0.6292555181444071, 'support': 4079.0}
|
39 |
+
- I-majorclaim: {'precision': 0.8763931104356636, 'recall': 0.8476237138657521, 'f1-score': 0.8617683686176836, 'support': 2041.0}
|
40 |
+
- I-premise: {'precision': 0.8874882085584427, 'recall': 0.903448275862069, 'f1-score': 0.8953971275307147, 'support': 11455.0}
|
41 |
+
- O: {'precision': 0.9999122345093909, 'recall': 1.0, 'f1-score': 0.9999561153289156, 'support': 11393.0}
|
42 |
+
- Accuracy: 0.8943
|
43 |
+
- Macro avg: {'precision': 0.8231015094406778, 'recall': 0.8143744532287771, 'f1-score': 0.8183400036032316, 'support': 30027.0}
|
44 |
+
- Weighted avg: {'precision': 0.8929245767023277, 'recall': 0.8942951343790588, 'f1-score': 0.8935151399218458, 'support': 30027.0}
|
45 |
+
|
46 |
+
## Model description
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Intended uses & limitations
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Training and evaluation data
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Training procedure
|
59 |
+
|
60 |
+
### Training hyperparameters
|
61 |
+
|
62 |
+
The following hyperparameters were used during training:
|
63 |
+
- learning_rate: 2e-05
|
64 |
+
- train_batch_size: 8
|
65 |
+
- eval_batch_size: 8
|
66 |
+
- seed: 42
|
67 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
68 |
+
- lr_scheduler_type: linear
|
69 |
+
- num_epochs: 7
|
70 |
+
|
71 |
+
### Training results
|
72 |
+
|
73 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
74 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
75 |
+
| No log | 1.0 | 41 | 0.4221 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.7233782129742962, 'recall': 0.921996879875195, 'f1-score': 0.8106995884773661, 'support': 641.0} | {'precision': 0.5306122448979592, 'recall': 0.26771267467516546, 'f1-score': 0.35587420563793387, 'support': 4079.0} | {'precision': 0.5553590378493102, 'recall': 0.7692307692307693, 'f1-score': 0.6450287592440428, 'support': 2041.0} | {'precision': 0.8375491849353569, 'recall': 0.9105194238323876, 'f1-score': 0.8725112932909486, 'support': 11455.0} | {'precision': 0.9565363881401617, 'recall': 0.9967523918195383, 'f1-score': 0.9762303889963465, 'support': 11393.0} | 0.8339 | {'precision': 0.5147764383995834, 'recall': 0.5523160199190079, 'f1-score': 0.5229063193780912, 'support': 30027.0} | {'precision': 0.8077225683958144, 'recall': 0.8338828387784327, 'f1-score': 0.8127546110204618, 'support': 30027.0} |
|
76 |
+
| No log | 2.0 | 82 | 0.2939 | {'precision': 0.3915094339622642, 'recall': 0.2996389891696751, 'f1-score': 0.3394683026584867, 'support': 277.0} | {'precision': 0.9166666666666666, 'recall': 0.07801418439716312, 'f1-score': 0.1437908496732026, 'support': 141.0} | {'precision': 0.7590361445783133, 'recall': 0.982839313572543, 'f1-score': 0.8565601631543168, 'support': 641.0} | {'precision': 0.5572158867479355, 'recall': 0.6947781318950723, 'f1-score': 0.6184397163120567, 'support': 4079.0} | {'precision': 0.8706896551724138, 'recall': 0.6927976482116609, 'f1-score': 0.7716234652114597, 'support': 2041.0} | {'precision': 0.9044070291655166, 'recall': 0.8581405499781755, 'f1-score': 0.8806665472137609, 'support': 11455.0} | {'precision': 0.9999122345093909, 'recall': 1.0, 'f1-score': 0.9999561153289156, 'support': 11393.0} | 0.8724 | {'precision': 0.7713481501146429, 'recall': 0.6580298310320414, 'f1-score': 0.6586435942217427, 'support': 30027.0} | {'precision': 0.8834110659403355, 'recall': 0.8723815232957005, 'f1-score': 0.8739266896403793, 'support': 30027.0} |
|
77 |
+
| No log | 3.0 | 123 | 0.2914 | {'precision': 0.5445026178010471, 'recall': 0.37545126353790614, 'f1-score': 0.4444444444444445, 'support': 277.0} | {'precision': 0.8777777777777778, 'recall': 0.5602836879432624, 'f1-score': 0.683982683982684, 'support': 141.0} | {'precision': 0.7904269081500647, 'recall': 0.953198127925117, 'f1-score': 0.8642149929278642, 'support': 641.0} | {'precision': 0.6203389830508474, 'recall': 0.3589114979161559, 'f1-score': 0.45472899518558785, 'support': 4079.0} | {'precision': 0.8564718162839249, 'recall': 0.8040176384125429, 'f1-score': 0.8294162244124337, 'support': 2041.0} | {'precision': 0.8237107201924523, 'recall': 0.9565255347010039, 'f1-score': 0.8851637920588118, 'support': 11455.0} | {'precision': 0.9997367266344888, 'recall': 0.9999122268059335, 'f1-score': 0.9998244690187819, 'support': 11393.0} | 0.8741 | {'precision': 0.7875665071272291, 'recall': 0.7154714253202744, 'f1-score': 0.737396514575801, 'support': 30027.0} | {'precision': 0.8620670081983853, 'recall': 0.8741466013920804, 'f1-score': 0.8609499443491488, 'support': 30027.0} |
|
78 |
+
| No log | 4.0 | 164 | 0.2585 | {'precision': 0.6327272727272727, 'recall': 0.628158844765343, 'f1-score': 0.6304347826086956, 'support': 277.0} | {'precision': 0.8308823529411765, 'recall': 0.8014184397163121, 'f1-score': 0.8158844765342961, 'support': 141.0} | {'precision': 0.874806800618238, 'recall': 0.8829953198127926, 'f1-score': 0.8788819875776397, 'support': 641.0} | {'precision': 0.6304878048780488, 'recall': 0.6337337582740867, 'f1-score': 0.6321066145005502, 'support': 4079.0} | {'precision': 0.8236389018147976, 'recall': 0.8672219500244978, 'f1-score': 0.8448687350835322, 'support': 2041.0} | {'precision': 0.9004061451527459, 'recall': 0.8902662592754256, 'f1-score': 0.8953074930863438, 'support': 11455.0} | {'precision': 0.9999122345093909, 'recall': 1.0, 'f1-score': 0.9999561153289156, 'support': 11393.0} | 0.8925 | {'precision': 0.8132659303773815, 'recall': 0.8148277959812082, 'f1-score': 0.8139200292457104, 'support': 30027.0} | {'precision': 0.892934034725354, 'recall': 0.8924967529223699, 'f1-score': 0.8926639632367819, 'support': 30027.0} |
|
79 |
+
| No log | 5.0 | 205 | 0.2866 | {'precision': 0.6352941176470588, 'recall': 0.5848375451263538, 'f1-score': 0.6090225563909775, 'support': 277.0} | {'precision': 0.8382352941176471, 'recall': 0.8085106382978723, 'f1-score': 0.8231046931407943, 'support': 141.0} | {'precision': 0.8605697151424287, 'recall': 0.8954758190327613, 'f1-score': 0.8776758409785932, 'support': 641.0} | {'precision': 0.6380439868975198, 'recall': 0.668546212306938, 'f1-score': 0.6529390638094098, 'support': 4079.0} | {'precision': 0.8673106253177427, 'recall': 0.8358647721705047, 'f1-score': 0.8512974051896207, 'support': 2041.0} | {'precision': 0.9037239675255913, 'recall': 0.8940200785683108, 'f1-score': 0.8988458331504806, 'support': 11455.0} | {'precision': 0.9997367497367498, 'recall': 1.0, 'f1-score': 0.9998683575409189, 'support': 11393.0} | 0.8964 | {'precision': 0.8204163509121054, 'recall': 0.8124650093575345, 'f1-score': 0.8161076786001136, 'support': 30027.0} | {'precision': 0.8978823752306275, 'recall': 0.8964265494388384, 'f1-score': 0.8970580772435964, 'support': 30027.0} |
|
80 |
+
| No log | 6.0 | 246 | 0.2945 | {'precision': 0.6460176991150443, 'recall': 0.5270758122743683, 'f1-score': 0.58051689860835, 'support': 277.0} | {'precision': 0.8646616541353384, 'recall': 0.8156028368794326, 'f1-score': 0.8394160583941607, 'support': 141.0} | {'precision': 0.8371428571428572, 'recall': 0.9141965678627145, 'f1-score': 0.8739746457867263, 'support': 641.0} | {'precision': 0.6458272753707474, 'recall': 0.5444962000490317, 'f1-score': 0.5908486299547753, 'support': 4079.0} | {'precision': 0.8827444956477215, 'recall': 0.8446839784419402, 'f1-score': 0.8632949424136204, 'support': 2041.0} | {'precision': 0.8662890913568086, 'recall': 0.9213443910955914, 'f1-score': 0.8929689483035789, 'support': 11455.0} | {'precision': 0.9999122268059335, 'recall': 0.9999122268059335, 'f1-score': 0.9999122268059335, 'support': 11393.0} | 0.8905 | {'precision': 0.8203707570820643, 'recall': 0.7953302876298588, 'f1-score': 0.805847478609592, 'support': 30027.0} | {'precision': 0.8854972285164366, 'recall': 0.8904652479435174, 'f1-score': 0.886948227760569, 'support': 30027.0} |
|
81 |
+
| No log | 7.0 | 287 | 0.2899 | {'precision': 0.657258064516129, 'recall': 0.5884476534296029, 'f1-score': 0.620952380952381, 'support': 277.0} | {'precision': 0.8380281690140845, 'recall': 0.8439716312056738, 'f1-score': 0.8409893992932863, 'support': 141.0} | {'precision': 0.8622754491017964, 'recall': 0.8985959438377535, 'f1-score': 0.880061115355233, 'support': 641.0} | {'precision': 0.6403553299492386, 'recall': 0.6185339544005883, 'f1-score': 0.6292555181444071, 'support': 4079.0} | {'precision': 0.8763931104356636, 'recall': 0.8476237138657521, 'f1-score': 0.8617683686176836, 'support': 2041.0} | {'precision': 0.8874882085584427, 'recall': 0.903448275862069, 'f1-score': 0.8953971275307147, 'support': 11455.0} | {'precision': 0.9999122345093909, 'recall': 1.0, 'f1-score': 0.9999561153289156, 'support': 11393.0} | 0.8943 | {'precision': 0.8231015094406778, 'recall': 0.8143744532287771, 'f1-score': 0.8183400036032316, 'support': 30027.0} | {'precision': 0.8929245767023277, 'recall': 0.8942951343790588, 'f1-score': 0.8935151399218458, 'support': 30027.0} |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.37.2
|
87 |
+
- Pytorch 2.2.0+cu121
|
88 |
+
- Datasets 2.17.0
|
89 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592330980
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35f233b1623da55ad7b04639e7d205739d8eecf5e918b69b3247079838ae8fb9
|
3 |
size 592330980
|