Theon1130 commited on
Commit
a114a9b
1 Parent(s): a6ce4a4
SLAKEQformer/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /workspace/ROCO_pmc_llava-v1.6-mistral_qfomer
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
SLAKEQformer/adapter_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "LlavaMistralForCausalLM",
5
+ "parent_library": "llava.model.language_model.llava_mistral"
6
+ },
7
+ "base_model_name_or_path": "/workspace/ROCO_pmc_llava-v1.6-mistral_qfomer",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 64,
17
+ "lora_dropout": 0.1,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": [
21
+ "mm_projector",
22
+ "query_tokens",
23
+ "post_projection",
24
+ "projection"
25
+ ],
26
+ "peft_type": "LORA",
27
+ "r": 32,
28
+ "rank_pattern": {},
29
+ "revision": null,
30
+ "target_modules": [
31
+ "down_proj",
32
+ "q_proj",
33
+ "v_proj",
34
+ "up_proj",
35
+ "gate_proj",
36
+ "k_proj"
37
+ ],
38
+ "task_type": null,
39
+ "use_dora": false,
40
+ "use_rslora": false
41
+ }
SLAKEQformer/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76f48565332da35719c306688363069a9e90ddc7e7ad1b8cd787311e08dff637
3
+ size 206932176
SLAKEQformer/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c952e743fb5bb7660f1301baa3dd9076ecdf5d57bf7bc408bd3a4a151cdb3ea4
3
+ size 4792
checkpoints/SLAKEROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-150/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /workspace/ROCO_pmc_llava-v1.6-mistral_qfomer
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
checkpoints/SLAKEROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-150/adapter_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "LlavaMistralForCausalLM",
5
+ "parent_library": "llava.model.language_model.llava_mistral"
6
+ },
7
+ "base_model_name_or_path": "/workspace/ROCO_pmc_llava-v1.6-mistral_qfomer",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 64,
17
+ "lora_dropout": 0.1,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": [
21
+ "mm_projector",
22
+ "query_tokens",
23
+ "post_projection",
24
+ "projection"
25
+ ],
26
+ "peft_type": "LORA",
27
+ "r": 32,
28
+ "rank_pattern": {},
29
+ "revision": null,
30
+ "target_modules": [
31
+ "down_proj",
32
+ "q_proj",
33
+ "v_proj",
34
+ "up_proj",
35
+ "gate_proj",
36
+ "k_proj"
37
+ ],
38
+ "task_type": null,
39
+ "use_dora": false,
40
+ "use_rslora": false
41
+ }
checkpoints/SLAKEROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-150/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76f48565332da35719c306688363069a9e90ddc7e7ad1b8cd787311e08dff637
3
+ size 206932176
checkpoints/SLAKEROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-150/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f60f205907fcb609ee9b15df875089977f7cad526f5396e9c6bd52fb7257b00
3
+ size 386239326
checkpoints/SLAKEROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-150/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42ab200adcc7415adf5d1c3b0962cf45153ed2fce54d7a4e6cc88dd98282e329
3
+ size 14244
checkpoints/SLAKEROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-150/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0f7a4ac76cf8abf095b00db440d71d496a5c29a0354356b04dd83c0f5f74c50
3
+ size 1000
checkpoints/SLAKEROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-150/trainer_state.json ADDED
@@ -0,0 +1,961 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.24133720993995667,
3
+ "best_model_checkpoint": "/workspace/checkpoints/SLAKEROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-150",
4
+ "epoch": 0.975609756097561,
5
+ "eval_steps": 30,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 8.000000000000001e-06,
14
+ "loss": 2.3594,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 1.6000000000000003e-05,
20
+ "loss": 2.6094,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 2.4e-05,
26
+ "loss": 1.5859,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 3.2000000000000005e-05,
32
+ "loss": 1.3438,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 4e-05,
38
+ "loss": 0.7969,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 3.999549432349539e-05,
44
+ "loss": 0.7383,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.05,
49
+ "learning_rate": 3.998197932409364e-05,
50
+ "loss": 1.1797,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 3.9959461091216256e-05,
56
+ "loss": 0.582,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.06,
61
+ "learning_rate": 3.9927949770850535e-05,
62
+ "loss": 0.5625,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.07,
67
+ "learning_rate": 3.988745956097806e-05,
68
+ "loss": 0.5273,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 3.9838008705177537e-05,
74
+ "loss": 0.6641,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.08,
79
+ "learning_rate": 3.977961948440491e-05,
80
+ "loss": 0.7266,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 3.971231820695417e-05,
86
+ "loss": 0.8281,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 3.963613519660379e-05,
92
+ "loss": 0.5664,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 3.955110477895373e-05,
98
+ "loss": 0.7891,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 3.945726526595949e-05,
104
+ "loss": 0.4141,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 3.935465893866998e-05,
110
+ "loss": 0.6328,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.12,
115
+ "learning_rate": 3.924333202817699e-05,
116
+ "loss": 0.6211,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 3.912333469478502e-05,
122
+ "loss": 0.3438,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.13,
127
+ "learning_rate": 3.899472100541064e-05,
128
+ "loss": 0.4531,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.14,
133
+ "learning_rate": 3.885754890922169e-05,
134
+ "loss": 0.9258,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.14,
139
+ "learning_rate": 3.8711880211527244e-05,
140
+ "loss": 0.4023,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.15,
145
+ "learning_rate": 3.8557780545930194e-05,
146
+ "loss": 0.4453,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.16,
151
+ "learning_rate": 3.8395319344754776e-05,
152
+ "loss": 0.4766,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.16,
157
+ "learning_rate": 3.822456980776272e-05,
158
+ "loss": 0.3887,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.17,
163
+ "learning_rate": 3.804560886917171e-05,
164
+ "loss": 0.4062,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.18,
169
+ "learning_rate": 3.7858517162991375e-05,
170
+ "loss": 0.4863,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.18,
175
+ "learning_rate": 3.766337898669219e-05,
176
+ "loss": 0.3926,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.19,
181
+ "learning_rate": 3.7460282263223764e-05,
182
+ "loss": 0.3965,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.2,
187
+ "learning_rate": 3.7249318501399613e-05,
188
+ "loss": 0.4355,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "eval_loss": 0.4406982958316803,
194
+ "eval_runtime": 6292.7173,
195
+ "eval_samples_per_second": 0.167,
196
+ "eval_steps_per_second": 0.084,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.2,
201
+ "learning_rate": 3.703058275466623e-05,
202
+ "loss": 0.4922,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.21,
207
+ "learning_rate": 3.6804173578275094e-05,
208
+ "loss": 0.4688,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.21,
213
+ "learning_rate": 3.657019298487685e-05,
214
+ "loss": 0.3711,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.22,
219
+ "learning_rate": 3.6328746398557715e-05,
220
+ "loss": 0.3438,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.23,
225
+ "learning_rate": 3.607994260733881e-05,
226
+ "loss": 0.6016,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.23,
231
+ "learning_rate": 3.582389371415977e-05,
232
+ "loss": 0.3672,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.24,
237
+ "learning_rate": 3.556071508636879e-05,
238
+ "loss": 0.5547,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.25,
243
+ "learning_rate": 3.529052530374185e-05,
244
+ "loss": 0.2969,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.25,
249
+ "learning_rate": 3.5013446105054486e-05,
250
+ "loss": 0.3223,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.26,
255
+ "learning_rate": 3.472960233323025e-05,
256
+ "loss": 0.4219,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.27,
261
+ "learning_rate": 3.443912187909049e-05,
262
+ "loss": 0.4336,
263
+ "step": 41
264
+ },
265
+ {
266
+ "epoch": 0.27,
267
+ "learning_rate": 3.4142135623730954e-05,
268
+ "loss": 0.3984,
269
+ "step": 42
270
+ },
271
+ {
272
+ "epoch": 0.28,
273
+ "learning_rate": 3.3838777379550926e-05,
274
+ "loss": 0.2354,
275
+ "step": 43
276
+ },
277
+ {
278
+ "epoch": 0.29,
279
+ "learning_rate": 3.352918382996174e-05,
280
+ "loss": 0.4336,
281
+ "step": 44
282
+ },
283
+ {
284
+ "epoch": 0.29,
285
+ "learning_rate": 3.321349446780163e-05,
286
+ "loss": 0.3457,
287
+ "step": 45
288
+ },
289
+ {
290
+ "epoch": 0.3,
291
+ "learning_rate": 3.2891851532484784e-05,
292
+ "loss": 0.5039,
293
+ "step": 46
294
+ },
295
+ {
296
+ "epoch": 0.31,
297
+ "learning_rate": 3.256439994591285e-05,
298
+ "loss": 0.3184,
299
+ "step": 47
300
+ },
301
+ {
302
+ "epoch": 0.31,
303
+ "learning_rate": 3.223128724717783e-05,
304
+ "loss": 0.3613,
305
+ "step": 48
306
+ },
307
+ {
308
+ "epoch": 0.32,
309
+ "learning_rate": 3.189266352608574e-05,
310
+ "loss": 0.2949,
311
+ "step": 49
312
+ },
313
+ {
314
+ "epoch": 0.33,
315
+ "learning_rate": 3.1548681355530966e-05,
316
+ "loss": 0.5195,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 0.33,
321
+ "learning_rate": 3.1199495722751914e-05,
322
+ "loss": 0.2354,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 0.34,
327
+ "learning_rate": 3.084526395949871e-05,
328
+ "loss": 0.3945,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 0.34,
333
+ "learning_rate": 3.0486145671144637e-05,
334
+ "loss": 0.3066,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 0.35,
339
+ "learning_rate": 3.012230266477313e-05,
340
+ "loss": 0.3926,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 0.36,
345
+ "learning_rate": 2.9753898876272695e-05,
346
+ "loss": 0.4102,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 0.36,
351
+ "learning_rate": 2.9381100296472742e-05,
352
+ "loss": 0.2871,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 0.37,
357
+ "learning_rate": 2.9004074896353468e-05,
358
+ "loss": 0.2656,
359
+ "step": 57
360
+ },
361
+ {
362
+ "epoch": 0.38,
363
+ "learning_rate": 2.862299255136357e-05,
364
+ "loss": 0.4492,
365
+ "step": 58
366
+ },
367
+ {
368
+ "epoch": 0.38,
369
+ "learning_rate": 2.8238024964879857e-05,
370
+ "loss": 0.3379,
371
+ "step": 59
372
+ },
373
+ {
374
+ "epoch": 0.39,
375
+ "learning_rate": 2.7849345590843276e-05,
376
+ "loss": 0.377,
377
+ "step": 60
378
+ },
379
+ {
380
+ "epoch": 0.39,
381
+ "eval_loss": 0.34713810682296753,
382
+ "eval_runtime": 6307.1462,
383
+ "eval_samples_per_second": 0.167,
384
+ "eval_steps_per_second": 0.084,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.4,
389
+ "learning_rate": 2.7457129555606177e-05,
390
+ "loss": 0.209,
391
+ "step": 61
392
+ },
393
+ {
394
+ "epoch": 0.4,
395
+ "learning_rate": 2.7061553579026017e-05,
396
+ "loss": 0.2617,
397
+ "step": 62
398
+ },
399
+ {
400
+ "epoch": 0.41,
401
+ "learning_rate": 2.6662795894841155e-05,
402
+ "loss": 0.291,
403
+ "step": 63
404
+ },
405
+ {
406
+ "epoch": 0.42,
407
+ "learning_rate": 2.6261036170364448e-05,
408
+ "loss": 0.2451,
409
+ "step": 64
410
+ },
411
+ {
412
+ "epoch": 0.42,
413
+ "learning_rate": 2.585645542553101e-05,
414
+ "loss": 0.5625,
415
+ "step": 65
416
+ },
417
+ {
418
+ "epoch": 0.43,
419
+ "learning_rate": 2.5449235951336458e-05,
420
+ "loss": 0.2158,
421
+ "step": 66
422
+ },
423
+ {
424
+ "epoch": 0.44,
425
+ "learning_rate": 2.5039561227702507e-05,
426
+ "loss": 0.3145,
427
+ "step": 67
428
+ },
429
+ {
430
+ "epoch": 0.44,
431
+ "learning_rate": 2.4627615840806837e-05,
432
+ "loss": 0.3145,
433
+ "step": 68
434
+ },
435
+ {
436
+ "epoch": 0.45,
437
+ "learning_rate": 2.4213585399914528e-05,
438
+ "loss": 0.2617,
439
+ "step": 69
440
+ },
441
+ {
442
+ "epoch": 0.46,
443
+ "learning_rate": 2.3797656453748567e-05,
444
+ "loss": 0.4473,
445
+ "step": 70
446
+ },
447
+ {
448
+ "epoch": 0.46,
449
+ "learning_rate": 2.3380016406436986e-05,
450
+ "loss": 0.3184,
451
+ "step": 71
452
+ },
453
+ {
454
+ "epoch": 0.47,
455
+ "learning_rate": 2.296085343307463e-05,
456
+ "loss": 0.2949,
457
+ "step": 72
458
+ },
459
+ {
460
+ "epoch": 0.47,
461
+ "learning_rate": 2.2540356394937577e-05,
462
+ "loss": 0.4062,
463
+ "step": 73
464
+ },
465
+ {
466
+ "epoch": 0.48,
467
+ "learning_rate": 2.2118714754388323e-05,
468
+ "loss": 0.5195,
469
+ "step": 74
470
+ },
471
+ {
472
+ "epoch": 0.49,
473
+ "learning_rate": 2.1696118489510186e-05,
474
+ "loss": 0.373,
475
+ "step": 75
476
+ },
477
+ {
478
+ "epoch": 0.49,
479
+ "learning_rate": 2.127275800850933e-05,
480
+ "loss": 0.3301,
481
+ "step": 76
482
+ },
483
+ {
484
+ "epoch": 0.5,
485
+ "learning_rate": 2.084882406392297e-05,
486
+ "loss": 0.3047,
487
+ "step": 77
488
+ },
489
+ {
490
+ "epoch": 0.51,
491
+ "learning_rate": 2.0424507666672473e-05,
492
+ "loss": 0.2578,
493
+ "step": 78
494
+ },
495
+ {
496
+ "epoch": 0.51,
497
+ "learning_rate": 2e-05,
498
+ "loss": 0.2852,
499
+ "step": 79
500
+ },
501
+ {
502
+ "epoch": 0.52,
503
+ "learning_rate": 1.957549233332753e-05,
504
+ "loss": 0.2314,
505
+ "step": 80
506
+ },
507
+ {
508
+ "epoch": 0.53,
509
+ "learning_rate": 1.915117593607704e-05,
510
+ "loss": 0.3164,
511
+ "step": 81
512
+ },
513
+ {
514
+ "epoch": 0.53,
515
+ "learning_rate": 1.8727241991490674e-05,
516
+ "loss": 0.291,
517
+ "step": 82
518
+ },
519
+ {
520
+ "epoch": 0.54,
521
+ "learning_rate": 1.8303881510489824e-05,
522
+ "loss": 0.3613,
523
+ "step": 83
524
+ },
525
+ {
526
+ "epoch": 0.55,
527
+ "learning_rate": 1.788128524561168e-05,
528
+ "loss": 0.2158,
529
+ "step": 84
530
+ },
531
+ {
532
+ "epoch": 0.55,
533
+ "learning_rate": 1.7459643605062427e-05,
534
+ "loss": 0.5234,
535
+ "step": 85
536
+ },
537
+ {
538
+ "epoch": 0.56,
539
+ "learning_rate": 1.7039146566925376e-05,
540
+ "loss": 0.3613,
541
+ "step": 86
542
+ },
543
+ {
544
+ "epoch": 0.57,
545
+ "learning_rate": 1.6619983593563024e-05,
546
+ "loss": 0.2871,
547
+ "step": 87
548
+ },
549
+ {
550
+ "epoch": 0.57,
551
+ "learning_rate": 1.6202343546251432e-05,
552
+ "loss": 0.2363,
553
+ "step": 88
554
+ },
555
+ {
556
+ "epoch": 0.58,
557
+ "learning_rate": 1.578641460008548e-05,
558
+ "loss": 0.2021,
559
+ "step": 89
560
+ },
561
+ {
562
+ "epoch": 0.59,
563
+ "learning_rate": 1.5372384159193173e-05,
564
+ "loss": 0.2676,
565
+ "step": 90
566
+ },
567
+ {
568
+ "epoch": 0.59,
569
+ "eval_loss": 0.2674311399459839,
570
+ "eval_runtime": 6309.5363,
571
+ "eval_samples_per_second": 0.167,
572
+ "eval_steps_per_second": 0.084,
573
+ "step": 90
574
+ },
575
+ {
576
+ "epoch": 0.59,
577
+ "learning_rate": 1.4960438772297501e-05,
578
+ "loss": 0.2637,
579
+ "step": 91
580
+ },
581
+ {
582
+ "epoch": 0.6,
583
+ "learning_rate": 1.4550764048663547e-05,
584
+ "loss": 0.2559,
585
+ "step": 92
586
+ },
587
+ {
588
+ "epoch": 0.6,
589
+ "learning_rate": 1.4143544574468995e-05,
590
+ "loss": 0.2451,
591
+ "step": 93
592
+ },
593
+ {
594
+ "epoch": 0.61,
595
+ "learning_rate": 1.3738963829635559e-05,
596
+ "loss": 0.2305,
597
+ "step": 94
598
+ },
599
+ {
600
+ "epoch": 0.62,
601
+ "learning_rate": 1.333720410515885e-05,
602
+ "loss": 0.1494,
603
+ "step": 95
604
+ },
605
+ {
606
+ "epoch": 0.62,
607
+ "learning_rate": 1.2938446420973984e-05,
608
+ "loss": 0.1875,
609
+ "step": 96
610
+ },
611
+ {
612
+ "epoch": 0.63,
613
+ "learning_rate": 1.2542870444393831e-05,
614
+ "loss": 0.4883,
615
+ "step": 97
616
+ },
617
+ {
618
+ "epoch": 0.64,
619
+ "learning_rate": 1.2150654409156725e-05,
620
+ "loss": 0.248,
621
+ "step": 98
622
+ },
623
+ {
624
+ "epoch": 0.64,
625
+ "learning_rate": 1.176197503512015e-05,
626
+ "loss": 0.1709,
627
+ "step": 99
628
+ },
629
+ {
630
+ "epoch": 0.65,
631
+ "learning_rate": 1.1377007448636434e-05,
632
+ "loss": 0.2295,
633
+ "step": 100
634
+ },
635
+ {
636
+ "epoch": 0.66,
637
+ "learning_rate": 1.0995925103646532e-05,
638
+ "loss": 0.2988,
639
+ "step": 101
640
+ },
641
+ {
642
+ "epoch": 0.66,
643
+ "learning_rate": 1.0618899703527265e-05,
644
+ "loss": 0.332,
645
+ "step": 102
646
+ },
647
+ {
648
+ "epoch": 0.67,
649
+ "learning_rate": 1.0246101123727315e-05,
650
+ "loss": 0.2119,
651
+ "step": 103
652
+ },
653
+ {
654
+ "epoch": 0.68,
655
+ "learning_rate": 9.877697335226872e-06,
656
+ "loss": 0.1865,
657
+ "step": 104
658
+ },
659
+ {
660
+ "epoch": 0.68,
661
+ "learning_rate": 9.51385432885537e-06,
662
+ "loss": 0.3418,
663
+ "step": 105
664
+ },
665
+ {
666
+ "epoch": 0.69,
667
+ "learning_rate": 9.1547360405013e-06,
668
+ "loss": 0.2061,
669
+ "step": 106
670
+ },
671
+ {
672
+ "epoch": 0.7,
673
+ "learning_rate": 8.800504277248094e-06,
674
+ "loss": 0.2188,
675
+ "step": 107
676
+ },
677
+ {
678
+ "epoch": 0.7,
679
+ "learning_rate": 8.451318644469037e-06,
680
+ "loss": 0.3438,
681
+ "step": 108
682
+ },
683
+ {
684
+ "epoch": 0.71,
685
+ "learning_rate": 8.10733647391427e-06,
686
+ "loss": 0.3457,
687
+ "step": 109
688
+ },
689
+ {
690
+ "epoch": 0.72,
691
+ "learning_rate": 7.768712752822179e-06,
692
+ "loss": 0.2217,
693
+ "step": 110
694
+ },
695
+ {
696
+ "epoch": 0.72,
697
+ "learning_rate": 7.435600054087153e-06,
698
+ "loss": 0.2275,
699
+ "step": 111
700
+ },
701
+ {
702
+ "epoch": 0.73,
703
+ "learning_rate": 7.108148467515217e-06,
704
+ "loss": 0.3984,
705
+ "step": 112
706
+ },
707
+ {
708
+ "epoch": 0.73,
709
+ "learning_rate": 6.7865055321983754e-06,
710
+ "loss": 0.1797,
711
+ "step": 113
712
+ },
713
+ {
714
+ "epoch": 0.74,
715
+ "learning_rate": 6.4708161700382655e-06,
716
+ "loss": 0.3203,
717
+ "step": 114
718
+ },
719
+ {
720
+ "epoch": 0.75,
721
+ "learning_rate": 6.161222620449079e-06,
722
+ "loss": 0.2227,
723
+ "step": 115
724
+ },
725
+ {
726
+ "epoch": 0.75,
727
+ "learning_rate": 5.857864376269051e-06,
728
+ "loss": 0.2354,
729
+ "step": 116
730
+ },
731
+ {
732
+ "epoch": 0.76,
733
+ "learning_rate": 5.560878120909512e-06,
734
+ "loss": 0.1816,
735
+ "step": 117
736
+ },
737
+ {
738
+ "epoch": 0.77,
739
+ "learning_rate": 5.2703976667697575e-06,
740
+ "loss": 0.5,
741
+ "step": 118
742
+ },
743
+ {
744
+ "epoch": 0.77,
745
+ "learning_rate": 4.986553894945512e-06,
746
+ "loss": 0.2002,
747
+ "step": 119
748
+ },
749
+ {
750
+ "epoch": 0.78,
751
+ "learning_rate": 4.709474696258154e-06,
752
+ "loss": 0.3242,
753
+ "step": 120
754
+ },
755
+ {
756
+ "epoch": 0.78,
757
+ "eval_loss": 0.24586248397827148,
758
+ "eval_runtime": 6268.6185,
759
+ "eval_samples_per_second": 0.168,
760
+ "eval_steps_per_second": 0.084,
761
+ "step": 120
762
+ },
763
+ {
764
+ "epoch": 0.79,
765
+ "learning_rate": 4.439284913631215e-06,
766
+ "loss": 0.2598,
767
+ "step": 121
768
+ },
769
+ {
770
+ "epoch": 0.79,
771
+ "learning_rate": 4.176106285840229e-06,
772
+ "loss": 0.2031,
773
+ "step": 122
774
+ },
775
+ {
776
+ "epoch": 0.8,
777
+ "learning_rate": 3.920057392661192e-06,
778
+ "loss": 0.2598,
779
+ "step": 123
780
+ },
781
+ {
782
+ "epoch": 0.81,
783
+ "learning_rate": 3.6712536014422885e-06,
784
+ "loss": 0.2363,
785
+ "step": 124
786
+ },
787
+ {
788
+ "epoch": 0.81,
789
+ "learning_rate": 3.429807015123159e-06,
790
+ "loss": 0.2441,
791
+ "step": 125
792
+ },
793
+ {
794
+ "epoch": 0.82,
795
+ "learning_rate": 3.1958264217249145e-06,
796
+ "loss": 0.2119,
797
+ "step": 126
798
+ },
799
+ {
800
+ "epoch": 0.83,
801
+ "learning_rate": 2.9694172453337743e-06,
802
+ "loss": 0.332,
803
+ "step": 127
804
+ },
805
+ {
806
+ "epoch": 0.83,
807
+ "learning_rate": 2.7506814986003937e-06,
808
+ "loss": 0.3105,
809
+ "step": 128
810
+ },
811
+ {
812
+ "epoch": 0.84,
813
+ "learning_rate": 2.539717736776237e-06,
814
+ "loss": 0.1367,
815
+ "step": 129
816
+ },
817
+ {
818
+ "epoch": 0.85,
819
+ "learning_rate": 2.3366210133078136e-06,
820
+ "loss": 0.2598,
821
+ "step": 130
822
+ },
823
+ {
824
+ "epoch": 0.85,
825
+ "learning_rate": 2.1414828370086326e-06,
826
+ "loss": 0.2256,
827
+ "step": 131
828
+ },
829
+ {
830
+ "epoch": 0.86,
831
+ "learning_rate": 1.9543911308282992e-06,
832
+ "loss": 0.1982,
833
+ "step": 132
834
+ },
835
+ {
836
+ "epoch": 0.87,
837
+ "learning_rate": 1.775430192237284e-06,
838
+ "loss": 0.1406,
839
+ "step": 133
840
+ },
841
+ {
842
+ "epoch": 0.87,
843
+ "learning_rate": 1.6046806552452254e-06,
844
+ "loss": 0.3027,
845
+ "step": 134
846
+ },
847
+ {
848
+ "epoch": 0.88,
849
+ "learning_rate": 1.442219454069813e-06,
850
+ "loss": 0.4297,
851
+ "step": 135
852
+ },
853
+ {
854
+ "epoch": 0.88,
855
+ "learning_rate": 1.2881197884727592e-06,
856
+ "loss": 0.2715,
857
+ "step": 136
858
+ },
859
+ {
860
+ "epoch": 0.89,
861
+ "learning_rate": 1.142451090778316e-06,
862
+ "loss": 0.334,
863
+ "step": 137
864
+ },
865
+ {
866
+ "epoch": 0.9,
867
+ "learning_rate": 1.0052789945893625e-06,
868
+ "loss": 0.3242,
869
+ "step": 138
870
+ },
871
+ {
872
+ "epoch": 0.9,
873
+ "learning_rate": 8.766653052149831e-07,
874
+ "loss": 0.2676,
875
+ "step": 139
876
+ },
877
+ {
878
+ "epoch": 0.91,
879
+ "learning_rate": 7.56667971823013e-07,
880
+ "loss": 0.2578,
881
+ "step": 140
882
+ },
883
+ {
884
+ "epoch": 0.92,
885
+ "learning_rate": 6.453410613300226e-07,
886
+ "loss": 0.1514,
887
+ "step": 141
888
+ },
889
+ {
890
+ "epoch": 0.92,
891
+ "learning_rate": 5.427347340405087e-07,
892
+ "loss": 0.1953,
893
+ "step": 142
894
+ },
895
+ {
896
+ "epoch": 0.93,
897
+ "learning_rate": 4.4889522104627715e-07,
898
+ "loss": 0.3125,
899
+ "step": 143
900
+ },
901
+ {
902
+ "epoch": 0.94,
903
+ "learning_rate": 3.6386480339621886e-07,
904
+ "loss": 0.2441,
905
+ "step": 144
906
+ },
907
+ {
908
+ "epoch": 0.94,
909
+ "learning_rate": 2.8768179304583087e-07,
910
+ "loss": 0.3125,
911
+ "step": 145
912
+ },
913
+ {
914
+ "epoch": 0.95,
915
+ "learning_rate": 2.2038051559509333e-07,
916
+ "loss": 0.2373,
917
+ "step": 146
918
+ },
919
+ {
920
+ "epoch": 0.96,
921
+ "learning_rate": 1.6199129482246335e-07,
922
+ "loss": 0.1973,
923
+ "step": 147
924
+ },
925
+ {
926
+ "epoch": 0.96,
927
+ "learning_rate": 1.1254043902195089e-07,
928
+ "loss": 0.3496,
929
+ "step": 148
930
+ },
931
+ {
932
+ "epoch": 0.97,
933
+ "learning_rate": 7.205022914946957e-08,
934
+ "loss": 0.291,
935
+ "step": 149
936
+ },
937
+ {
938
+ "epoch": 0.98,
939
+ "learning_rate": 4.053890878374933e-08,
940
+ "loss": 0.2754,
941
+ "step": 150
942
+ },
943
+ {
944
+ "epoch": 0.98,
945
+ "eval_loss": 0.24133720993995667,
946
+ "eval_runtime": 6310.9443,
947
+ "eval_samples_per_second": 0.167,
948
+ "eval_steps_per_second": 0.084,
949
+ "step": 150
950
+ }
951
+ ],
952
+ "logging_steps": 1,
953
+ "max_steps": 153,
954
+ "num_input_tokens_seen": 0,
955
+ "num_train_epochs": 1,
956
+ "save_steps": 30,
957
+ "total_flos": 9543693401269248.0,
958
+ "train_batch_size": 2,
959
+ "trial_name": null,
960
+ "trial_params": null
961
+ }
checkpoints/SLAKEROCO_pmc_llava-v1.6-mistral_qfomer/checkpoint-150/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c952e743fb5bb7660f1301baa3dd9076ecdf5d57bf7bc408bd3a4a151cdb3ea4
3
+ size 4792