--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Tiny Ko - TJ results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google Fleures type: google/fleurs config: clean split: None args: 'config:ko, split: test' metrics: - name: Wer type: wer value: 174.6096 --- # Whisper Tiny Ko - TJ This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the Google Fleures dataset. It achieves the following results on the evaluation set: - Loss: 0.789679 - Wer: 174.6096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1157 | 6.29 | 1000 | 0.5599 | 58.7828 | | 0.0174 | 12.58 | 2000 | 0.6095 | 143.0979 | | 0.0072 | 18.87 | 3000 | 0.6457 | 214.4074 | | 0.005 | 25.16 | 4000 | 0.6558 | 233.4280 | | 0.001500 | 32.16 | 5000 | 0.735888 | 148.2789 | | 0.000600 | 38.16 | 6000 | 0.764227 | 153.5841 | | 0.000400 | 44.16 | 7000 | 0.782319 | 174.4144 | | 0.000400 | 52.16 | 8000 | 0.789679 | 174.6096 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2