--- license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - yt metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: yt id type: yt metrics: - name: Wer type: wer value: 40.08170676350431 --- # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the yt id dataset. It achieves the following results on the evaluation set: - Loss: 0.6718 - Wer: 40.0817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 12 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.8104 | 0.26 | 1000 | 0.8244 | 49.7374 | | 0.7059 | 0.52 | 2000 | 0.7380 | 47.9671 | | 0.7127 | 0.77 | 3000 | 0.6957 | 48.8360 | | 0.5311 | 1.03 | 4000 | 0.6718 | 40.0817 | | 0.47 | 1.29 | 5000 | 0.6645 | 40.4254 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3