File size: 1,728 Bytes
cc27725
 
 
 
 
5f35585
 
 
 
 
cc27725
 
 
 
 
 
 
 
 
 
5f35585
 
 
 
 
 
 
cc27725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f35585
 
 
 
 
 
 
 
 
cc27725
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: studio-ousia/luke-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: luke-base-paper-setup
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# luke-base-paper-setup

This model is a fine-tuned version of [studio-ousia/luke-base](https://huggingface.co./studio-ousia/luke-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3800
- Accuracy: 0.8426
- Precision: 0.8465
- Recall: 0.8370
- F1: 0.8417

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5192        | 1.0   | 1074 | 0.4464          | 0.8063   | 0.8263    | 0.7756 | 0.8001 |
| 0.3708        | 2.0   | 2148 | 0.3782          | 0.8315   | 0.8365    | 0.8241 | 0.8303 |
| 0.3191        | 3.0   | 3222 | 0.3800          | 0.8426   | 0.8465    | 0.8370 | 0.8417 |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0