TheBloke commited on
Commit
7361901
1 Parent(s): e2b33bc

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +381 -0
README.md ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: lgaalves/tinyllama-1.1b-chat-v0.3_platypus
3
+ datasets:
4
+ - garage-bAInd/Open-Platypus
5
+ inference: false
6
+ language:
7
+ - en
8
+ license: other
9
+ model_creator: Luiz G. A. Alves
10
+ model_name: Tinyllama 1.1B Chat v0.3 Platypus
11
+ model_type: llama
12
+ pipeline_tag: text-generation
13
+ prompt_template: 'Below is an instruction that describes a task. Write a response
14
+ that appropriately completes the request.
15
+
16
+
17
+ ### Instruction:
18
+
19
+ {prompt}
20
+
21
+
22
+ ### Response:
23
+
24
+ '
25
+ quantized_by: TheBloke
26
+ ---
27
+
28
+ <!-- header start -->
29
+ <!-- 200823 -->
30
+ <div style="width: auto; margin-left: auto; margin-right: auto">
31
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
32
+ </div>
33
+ <div style="display: flex; justify-content: space-between; width: 100%;">
34
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
36
+ </div>
37
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
39
+ </div>
40
+ </div>
41
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
42
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
43
+ <!-- header end -->
44
+
45
+ # Tinyllama 1.1B Chat v0.3 Platypus - AWQ
46
+ - Model creator: [Luiz G. A. Alves](https://huggingface.co/lgaalves)
47
+ - Original model: [Tinyllama 1.1B Chat v0.3 Platypus](https://huggingface.co/lgaalves/tinyllama-1.1b-chat-v0.3_platypus)
48
+
49
+ <!-- description start -->
50
+ ## Description
51
+
52
+ This repo contains AWQ model files for [Luiz G. A. Alves's Tinyllama 1.1B Chat v0.3 Platypus](https://huggingface.co/lgaalves/tinyllama-1.1b-chat-v0.3_platypus).
53
+
54
+
55
+ ### About AWQ
56
+
57
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
58
+
59
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of Llama AWQ models for high-throughput concurrent inference in multi-user server scenarios.
60
+
61
+ As of September 25th 2023, preliminary Llama-only AWQ support has also been added to [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference).
62
+
63
+ Note that, at the time of writing, overall throughput is still lower than running vLLM or TGI with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
64
+ <!-- description end -->
65
+ <!-- repositories-available start -->
66
+ ## Repositories available
67
+
68
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/tinyllama-1.1b-chat-v0.3_platypus-AWQ)
69
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/tinyllama-1.1b-chat-v0.3_platypus-GPTQ)
70
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/tinyllama-1.1b-chat-v0.3_platypus-GGUF)
71
+ * [Luiz G. A. Alves's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lgaalves/tinyllama-1.1b-chat-v0.3_platypus)
72
+ <!-- repositories-available end -->
73
+
74
+ <!-- prompt-template start -->
75
+ ## Prompt template: Alpaca
76
+
77
+ ```
78
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
79
+
80
+ ### Instruction:
81
+ {prompt}
82
+
83
+ ### Response:
84
+
85
+ ```
86
+
87
+ <!-- prompt-template end -->
88
+
89
+
90
+ <!-- README_AWQ.md-provided-files start -->
91
+ ## Provided files, and AWQ parameters
92
+
93
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
94
+
95
+ Models are released as sharded safetensors files.
96
+
97
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
98
+ | ------ | ---- | -- | ----------- | ------- | ---- |
99
+ | [main](https://huggingface.co/TheBloke/tinyllama-1.1b-chat-v0.3_platypus-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 0.77 GB
100
+
101
+ <!-- README_AWQ.md-provided-files end -->
102
+
103
+ <!-- README_AWQ.md-use-from-vllm start -->
104
+ ## Serving this model from vLLM
105
+
106
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
107
+
108
+ Note: at the time of writing, vLLM has not yet done a new release with AWQ support.
109
+
110
+ If you try the vLLM examples below and get an error about `quantization` being unrecognised, or other AWQ-related issues, please install vLLM from Github source.
111
+
112
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
113
+
114
+ ```shell
115
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/tinyllama-1.1b-chat-v0.3_platypus-AWQ --quantization awq --dtype half
116
+ ```
117
+
118
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
119
+
120
+ ```python
121
+ from vllm import LLM, SamplingParams
122
+
123
+ prompts = [
124
+ "Hello, my name is",
125
+ "The president of the United States is",
126
+ "The capital of France is",
127
+ "The future of AI is",
128
+ ]
129
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
130
+
131
+ llm = LLM(model="TheBloke/tinyllama-1.1b-chat-v0.3_platypus-AWQ", quantization="awq", dtype="half")
132
+
133
+ outputs = llm.generate(prompts, sampling_params)
134
+
135
+ # Print the outputs.
136
+ for output in outputs:
137
+ prompt = output.prompt
138
+ generated_text = output.outputs[0].text
139
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
140
+ ```
141
+ <!-- README_AWQ.md-use-from-vllm start -->
142
+
143
+ <!-- README_AWQ.md-use-from-tgi start -->
144
+ ## Serving this model from Text Generation Inference (TGI)
145
+
146
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
147
+
148
+ Example Docker parameters:
149
+
150
+ ```shell
151
+ --model-id TheBloke/tinyllama-1.1b-chat-v0.3_platypus-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
152
+ ```
153
+
154
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
155
+
156
+ ```shell
157
+ pip3 install huggingface-hub
158
+ ```
159
+
160
+ ```python
161
+ from huggingface_hub import InferenceClient
162
+
163
+ endpoint_url = "https://your-endpoint-url-here"
164
+
165
+ prompt = "Tell me about AI"
166
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
167
+
168
+ ### Instruction:
169
+ {prompt}
170
+
171
+ ### Response:
172
+
173
+ '''
174
+
175
+ client = InferenceClient(endpoint_url)
176
+ response = client.text_generation(prompt,
177
+ max_new_tokens=128,
178
+ do_sample=True,
179
+ temperature=0.7,
180
+ top_p=0.95,
181
+ top_k=40,
182
+ repetition_penalty=1.1)
183
+
184
+ print(f"Model output: {response}")
185
+ ```
186
+ <!-- README_AWQ.md-use-from-tgi end -->
187
+
188
+ <!-- README_AWQ.md-use-from-python start -->
189
+ ## How to use this AWQ model from Python code
190
+
191
+ ### Install the necessary packages
192
+
193
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later
194
+
195
+ ```shell
196
+ pip3 install autoawq
197
+ ```
198
+
199
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
200
+
201
+ ```shell
202
+ pip3 uninstall -y autoawq
203
+ git clone https://github.com/casper-hansen/AutoAWQ
204
+ cd AutoAWQ
205
+ pip3 install .
206
+ ```
207
+
208
+ ### You can then try the following example code
209
+
210
+ ```python
211
+ from awq import AutoAWQForCausalLM
212
+ from transformers import AutoTokenizer
213
+
214
+ model_name_or_path = "TheBloke/tinyllama-1.1b-chat-v0.3_platypus-AWQ"
215
+
216
+ # Load model
217
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
218
+ trust_remote_code=False, safetensors=True)
219
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
220
+
221
+ prompt = "Tell me about AI"
222
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
223
+
224
+ ### Instruction:
225
+ {prompt}
226
+
227
+ ### Response:
228
+
229
+ '''
230
+
231
+ print("\n\n*** Generate:")
232
+
233
+ tokens = tokenizer(
234
+ prompt_template,
235
+ return_tensors='pt'
236
+ ).input_ids.cuda()
237
+
238
+ # Generate output
239
+ generation_output = model.generate(
240
+ tokens,
241
+ do_sample=True,
242
+ temperature=0.7,
243
+ top_p=0.95,
244
+ top_k=40,
245
+ max_new_tokens=512
246
+ )
247
+
248
+ print("Output: ", tokenizer.decode(generation_output[0]))
249
+
250
+ """
251
+ # Inference should be possible with transformers pipeline as well in future
252
+ # But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
253
+ from transformers import pipeline
254
+
255
+ print("*** Pipeline:")
256
+ pipe = pipeline(
257
+ "text-generation",
258
+ model=model,
259
+ tokenizer=tokenizer,
260
+ max_new_tokens=512,
261
+ do_sample=True,
262
+ temperature=0.7,
263
+ top_p=0.95,
264
+ top_k=40,
265
+ repetition_penalty=1.1
266
+ )
267
+
268
+ print(pipe(prompt_template)[0]['generated_text'])
269
+ """
270
+ ```
271
+ <!-- README_AWQ.md-use-from-python end -->
272
+
273
+ <!-- README_AWQ.md-compatibility start -->
274
+ ## Compatibility
275
+
276
+ The files provided are tested to work with:
277
+
278
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ)
279
+ - [vLLM](https://github.com/vllm-project/vllm)
280
+ - [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
281
+
282
+ TGI merged AWQ support on September 25th, 2023: [TGI PR #1054](https://github.com/huggingface/text-generation-inference/pull/1054). Use the `:latest` Docker container until the next TGI release is made.
283
+
284
+ <!-- README_AWQ.md-compatibility end -->
285
+
286
+ <!-- footer start -->
287
+ <!-- 200823 -->
288
+ ## Discord
289
+
290
+ For further support, and discussions on these models and AI in general, join us at:
291
+
292
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
293
+
294
+ ## Thanks, and how to contribute
295
+
296
+ Thanks to the [chirper.ai](https://chirper.ai) team!
297
+
298
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
299
+
300
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
301
+
302
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
303
+
304
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
305
+
306
+ * Patreon: https://patreon.com/TheBlokeAI
307
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
308
+
309
+ **Special thanks to**: Aemon Algiz.
310
+
311
+ **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
312
+
313
+
314
+ Thank you to all my generous patrons and donaters!
315
+
316
+ And thank you again to a16z for their generous grant.
317
+
318
+ <!-- footer end -->
319
+
320
+ # Original model card: Luiz G. A. Alves's Tinyllama 1.1B Chat v0.3 Platypus
321
+
322
+
323
+
324
+
325
+ # tinyllama-1.1b-chat-v0.3_platypus
326
+
327
+ **tinyllama-1.1b-chat-v0.3_platypus** is an instruction fine-tuned model based on the tinyllama transformer architecture.
328
+
329
+
330
+ ### Benchmark Metrics
331
+
332
+ | Metric |lgaalves/tinyllama-1.1b-chat-v0.3_platypus | tinyllama-1.1b-chat-v0.3 |
333
+ |-----------------------|-------|-------|
334
+ | Avg. | 37.67 | **38.74** |
335
+ | ARC (25-shot) | 30.29 | **35.07** |
336
+ | HellaSwag (10-shot) | 55.12 | **57.7** |
337
+ | MMLU (5-shot) | **26.13** | 25.53 |
338
+ | TruthfulQA (0-shot) | **39.15** | 36.67 |
339
+
340
+
341
+ We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.
342
+
343
+ ### Model Details
344
+
345
+ * **Trained by**: Luiz G A Alves
346
+ * **Model type:** **tinyllama-1.1b-chat-v0.3_platypus** is an auto-regressive language model based on the tinyllama transformer architecture.
347
+ * **Language(s)**: English
348
+
349
+ ### How to use:
350
+
351
+ ```python
352
+ # Use a pipeline as a high-level helper
353
+ >>> from transformers import pipeline
354
+ >>> pipe = pipeline("text-generation", model="lgaalves/tinyllama-1.1b-chat-v0.3_platypus")
355
+ >>> question = "What is a large language model?"
356
+ >>> answer = pipe(question)
357
+ >>> print(answer[0]['generated_text'])
358
+ ```
359
+
360
+ or, you can load the model direclty using:
361
+
362
+ ```python
363
+ # Load model directly
364
+ from transformers import AutoTokenizer, AutoModelForCausalLM
365
+
366
+ tokenizer = AutoTokenizer.from_pretrained("lgaalves/tinyllama-1.1b-chat-v0.3_platypus")
367
+ model = AutoModelForCausalLM.from_pretrained("lgaalves/tinyllama-1.1b-chat-v0.3_platypus")
368
+ ```
369
+
370
+ ### Training Dataset
371
+
372
+ `lgaalves/tinyllama-1.1b-chat-v0.3_platypus` trained using STEM and logic based dataset [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
373
+
374
+ ### Training Procedure
375
+
376
+ `lgaalves/tinyllama-1.1b-chat-v0.3_platypus` was instruction fine-tuned using LoRA on 1 V100 GPU on Google Colab. It took about 43 minutes to train it.
377
+
378
+
379
+ # Intended uses, limitations & biases
380
+
381
+ You can use the raw model for text generation or fine-tune it to a downstream task. The model was not extensively tested and may produce false information. It contains a lot of unfiltered content from the internet, which is far from neutral.