TheBloke commited on
Commit
c2806e4
·
1 Parent(s): af22eb6

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +430 -0
README.md ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/psmathur/orca_mini_v3_13b
3
+ datasets:
4
+ - psmathur/orca_mini_v1_dataset
5
+ - ehartford/dolphin
6
+ inference: false
7
+ language:
8
+ - en
9
+ library_name: transformers
10
+ license: other
11
+ model_creator: Pankaj Mathur
12
+ model_name: Orca Mini v3 13B
13
+ model_type: llama
14
+ pipeline_tag: text-generation
15
+ prompt_template: '### System:
16
+
17
+ You are an AI assistant that follows instruction extremely well. Help as much as
18
+ you can.
19
+
20
+
21
+ ### User:
22
+
23
+ {prompt}
24
+
25
+
26
+ ### Input:
27
+
28
+ {input}
29
+
30
+
31
+ ### Response:
32
+
33
+ '
34
+ quantized_by: TheBloke
35
+ ---
36
+
37
+ <!-- header start -->
38
+ <!-- 200823 -->
39
+ <div style="width: auto; margin-left: auto; margin-right: auto">
40
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
41
+ </div>
42
+ <div style="display: flex; justify-content: space-between; width: 100%;">
43
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
44
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
45
+ </div>
46
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
47
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
48
+ </div>
49
+ </div>
50
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
51
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
52
+ <!-- header end -->
53
+
54
+ # Orca Mini v3 13B - AWQ
55
+ - Model creator: [Pankaj Mathur](https://huggingface.co/psmathur)
56
+ - Original model: [Orca Mini v3 13B](https://huggingface.co/psmathur/orca_mini_v3_13b)
57
+
58
+ <!-- description start -->
59
+ ## Description
60
+
61
+ This repo contains AWQ model files for [Pankaj Mathur's Orca Mini v3 13B](https://huggingface.co/psmathur/orca_mini_v3_13b).
62
+
63
+
64
+ ### About AWQ
65
+
66
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
67
+
68
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
69
+ <!-- description end -->
70
+ <!-- repositories-available start -->
71
+ ## Repositories available
72
+
73
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/orca_mini_v3_13B-AWQ)
74
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/orca_mini_v3_13B-GPTQ)
75
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/orca_mini_v3_13B-GGUF)
76
+ * [Pankaj Mathur's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/orca_mini_v3_13b)
77
+ <!-- repositories-available end -->
78
+
79
+ <!-- prompt-template start -->
80
+ ## Prompt template: orca_mini
81
+
82
+ ```
83
+ ### System:
84
+ You are an AI assistant that follows instruction extremely well. Help as much as you can.
85
+
86
+ ### User:
87
+ {prompt}
88
+
89
+ ### Input:
90
+ {input}
91
+
92
+ ### Response:
93
+
94
+ ```
95
+
96
+ <!-- prompt-template end -->
97
+ <!-- licensing start -->
98
+ ## Licensing
99
+
100
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
101
+
102
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
103
+
104
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Pankaj Mathur's Orca Mini v3 13B](https://huggingface.co/psmathur/orca_mini_v3_13b).
105
+ <!-- licensing end -->
106
+ <!-- README_AWQ.md-provided-files start -->
107
+ ## Provided files and AWQ parameters
108
+
109
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
110
+
111
+ Models are released as sharded safetensors files.
112
+
113
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
114
+ | ------ | ---- | -- | ----------- | ------- | ---- |
115
+ | [main](https://huggingface.co/TheBloke/orca_mini_v3_13B-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.25 GB
116
+
117
+ <!-- README_AWQ.md-provided-files end -->
118
+
119
+ <!-- README_AWQ.md-use-from-vllm start -->
120
+ ## Serving this model from vLLM
121
+
122
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
123
+
124
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
125
+
126
+ ```shell
127
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/orca_mini_v3_13B-AWQ --quantization awq
128
+ ```
129
+
130
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
131
+
132
+ ```python
133
+ from vllm import LLM, SamplingParams
134
+
135
+ prompts = [
136
+ "Hello, my name is",
137
+ "The president of the United States is",
138
+ "The capital of France is",
139
+ "The future of AI is",
140
+ ]
141
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
142
+
143
+ llm = LLM(model="TheBloke/orca_mini_v3_13B-AWQ", quantization="awq")
144
+
145
+ outputs = llm.generate(prompts, sampling_params)
146
+
147
+ # Print the outputs.
148
+ for output in outputs:
149
+ prompt = output.prompt
150
+ generated_text = output.outputs[0].text
151
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
152
+ ```
153
+ <!-- README_AWQ.md-use-from-vllm start -->
154
+
155
+ <!-- README_AWQ.md-use-from-python start -->
156
+ ## How to use this AWQ model from Python code
157
+
158
+ ### Install the necessary packages
159
+
160
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
161
+
162
+ ```shell
163
+ pip3 install autoawq
164
+ ```
165
+
166
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
167
+
168
+ ```shell
169
+ pip3 uninstall -y autoawq
170
+ git clone https://github.com/casper-hansen/AutoAWQ
171
+ cd AutoAWQ
172
+ pip3 install .
173
+ ```
174
+
175
+ ### You can then try the following example code
176
+
177
+ ```python
178
+ from awq import AutoAWQForCausalLM
179
+ from transformers import AutoTokenizer
180
+
181
+ model_name_or_path = "TheBloke/orca_mini_v3_13B-AWQ"
182
+
183
+ # Load model
184
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
185
+ trust_remote_code=False, safetensors=True)
186
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
187
+
188
+ prompt = "Tell me about AI"
189
+ prompt_template=f'''### System:
190
+ You are an AI assistant that follows instruction extremely well. Help as much as you can.
191
+
192
+ ### User:
193
+ {prompt}
194
+
195
+ ### Input:
196
+ {input}
197
+
198
+ ### Response:
199
+
200
+ '''
201
+
202
+ print("\n\n*** Generate:")
203
+
204
+ tokens = tokenizer(
205
+ prompt_template,
206
+ return_tensors='pt'
207
+ ).input_ids.cuda()
208
+
209
+ # Generate output
210
+ generation_output = model.generate(
211
+ tokens,
212
+ do_sample=True,
213
+ temperature=0.7,
214
+ top_p=0.95,
215
+ top_k=40,
216
+ max_new_tokens=512
217
+ )
218
+
219
+ print("Output: ", tokenizer.decode(generation_output[0]))
220
+
221
+ # Inference can also be done using transformers' pipeline
222
+ from transformers import pipeline
223
+
224
+ print("*** Pipeline:")
225
+ pipe = pipeline(
226
+ "text-generation",
227
+ model=model,
228
+ tokenizer=tokenizer,
229
+ max_new_tokens=512,
230
+ do_sample=True,
231
+ temperature=0.7,
232
+ top_p=0.95,
233
+ top_k=40,
234
+ repetition_penalty=1.1
235
+ )
236
+
237
+ print(pipe(prompt_template)[0]['generated_text'])
238
+ ```
239
+ <!-- README_AWQ.md-use-from-python end -->
240
+
241
+ <!-- README_AWQ.md-compatibility start -->
242
+ ## Compatibility
243
+
244
+ The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
245
+
246
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
247
+ <!-- README_AWQ.md-compatibility end -->
248
+
249
+ <!-- footer start -->
250
+ <!-- 200823 -->
251
+ ## Discord
252
+
253
+ For further support, and discussions on these models and AI in general, join us at:
254
+
255
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
256
+
257
+ ## Thanks, and how to contribute
258
+
259
+ Thanks to the [chirper.ai](https://chirper.ai) team!
260
+
261
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
262
+
263
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
264
+
265
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
266
+
267
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
268
+
269
+ * Patreon: https://patreon.com/TheBlokeAI
270
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
271
+
272
+ **Special thanks to**: Aemon Algiz.
273
+
274
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
275
+
276
+
277
+ Thank you to all my generous patrons and donaters!
278
+
279
+ And thank you again to a16z for their generous grant.
280
+
281
+ <!-- footer end -->
282
+
283
+ # Original model card: Pankaj Mathur's Orca Mini v3 13B
284
+
285
+
286
+ # orca_mini_v3_13b
287
+
288
+ A Llama2-13b model trained on Orca Style datasets.
289
+
290
+
291
+ <br>
292
+
293
+ ![orca-mini](https://huggingface.co/psmathur/orca_mini_v3_13b/resolve/main/orca_minis_small.jpeg)
294
+
295
+
296
+ <br>
297
+
298
+ **P.S. If you're interested to collaborate, please connect with me at www.linkedin.com/in/pankajam.**
299
+
300
+ <br>
301
+
302
+
303
+
304
+ ### quantized versions
305
+
306
+ Big thanks to [@TheBloke](https://huggingface.co/TheBloke)
307
+
308
+ 1) https://huggingface.co/TheBloke/orca_mini_v3_13B-GGML
309
+
310
+ 2) https://huggingface.co/TheBloke/orca_mini_v3_13B-GPTQ
311
+
312
+
313
+ <br>
314
+ #### license disclaimer:
315
+
316
+ This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.
317
+
318
+ <br>
319
+
320
+ ## Evaluation
321
+
322
+ We evaluated orca_mini_v3_13b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI.
323
+
324
+ Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
325
+
326
+ |||||
327
+ |:------:|:--------:|:-------:|:--------:|
328
+ |**Task**|**Metric**|**Value**|**Stderr**|
329
+ |*arc_challenge*|acc_norm|0.6314|0.0141|
330
+ |*hellaswag*|acc_norm|0.8242|0.0038|
331
+ |*mmlu*|acc_norm|0.5637|0.0351|
332
+ |*truthfulqa_mc*|mc2|0.5127|0.0157|
333
+ |**Total Average**|-|**0.6329877193**||
334
+
335
+
336
+ <br>
337
+
338
+ ## Example Usage
339
+
340
+ Here is the prompt format
341
+
342
+ ```
343
+ ### System:
344
+ You are an AI assistant that follows instruction extremely well. Help as much as you can.
345
+
346
+ ### User:
347
+ Tell me about Orcas.
348
+
349
+ ### Assistant:
350
+
351
+ ```
352
+
353
+ Below shows a code example on how to use this model
354
+
355
+ ```python
356
+ import torch
357
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
358
+
359
+ tokenizer = AutoTokenizer.from_pretrained("psmathur/orca_mini_v3_13b")
360
+ model = AutoModelForCausalLM.from_pretrained(
361
+ "psmathur/orca_mini_v3_13b",
362
+ torch_dtype=torch.float16,
363
+ load_in_8bit=True,
364
+ low_cpu_mem_usage=True,
365
+ device_map="auto"
366
+ )
367
+ system_prompt = "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n"
368
+
369
+ #generate text steps
370
+ instruction = "Tell me about Orcas."
371
+ prompt = f"{system_prompt}### User: {instruction}\n\n### Assistant:\n"
372
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
373
+ output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096)
374
+
375
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
376
+
377
+ ```
378
+
379
+ <br>
380
+
381
+ #### Limitations & Biases:
382
+
383
+ While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
384
+
385
+ Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
386
+
387
+ Exercise caution and cross-check information when necessary.
388
+
389
+
390
+ <br>
391
+
392
+ ### Citiation:
393
+
394
+ Please kindly cite using the following BibTeX:
395
+
396
+ ```
397
+ @misc{orca_mini_v3_13b,
398
+ author = {Pankaj Mathur},
399
+ title = {orca_mini_v3_13b: An Orca Style Llama2-70b model},
400
+ year = {2023},
401
+ publisher = {HuggingFace},
402
+ journal = {HuggingFace repository},
403
+ howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v3_13b},
404
+ }
405
+ ```
406
+
407
+ ```
408
+ @misc{mukherjee2023orca,
409
+ title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
410
+ author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
411
+ year={2023},
412
+ eprint={2306.02707},
413
+ archivePrefix={arXiv},
414
+ primaryClass={cs.CL}
415
+ }
416
+ ```
417
+
418
+ ```
419
+ @software{touvron2023llama2,
420
+ title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
421
+ author={Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
422
+ Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
423
+ Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann,
424
+ Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
425
+ Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
426
+ Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu , Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
427
+ Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom},
428
+ year={2023}
429
+ }
430
+ ```