File size: 13,948 Bytes
21b61cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5c080e
 
 
 
 
 
 
 
 
 
21b61cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5c080e
21b61cc
 
 
f5c080e
21b61cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
---
base_model: chargoddard/mixtralnt-4x7b-test
inference: false
license: cc-by-nc-4.0
model_creator: Charles Goddard
model_name: Mixtralnt 4X7B Test
model_type: mixtral
prompt_template: '{prompt}

  '
quantized_by: TheBloke
---
<!-- markdownlint-disable MD041 -->

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Mixtralnt 4X7B Test - GGUF
- Model creator: [Charles Goddard](https://huggingface.co./chargoddard)
- Original model: [Mixtralnt 4X7B Test](https://huggingface.co./chargoddard/mixtralnt-4x7b-test)

<!-- description start -->
## Description

This repo contains GGUF format model files for [Charles Goddard's Mixtralnt 4X7B Test](https://huggingface.co./chargoddard/mixtralnt-4x7b-test).

<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

## EXPERIMENTAL - REQUIRES LLAMA.CPP PR

These are experimental GGUF files, created using a llama.cpp PR found here: https://github.com/ggerganov/llama.cpp/pull/4406.

THEY WILL NOT WORK WITH LLAMA.CPP FROM `main`, OR ANY DOWNSTREAM LLAMA.CPP CLIENT - such as LM Studio, llama-cpp-python, text-generation-webui, etc.

To test these GGUFs, please build llama.cpp from the above PR.

I have tested CUDA acceleration and it works great. I have not yet tested other forms of GPU acceleration.


<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available

* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF)
* [Charles Goddard's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co./chargoddard/mixtralnt-4x7b-test)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Unknown

```
{prompt}

```

<!-- prompt-template end -->



## Explanation of quantisation methods

<details>
  <summary>Click to see details</summary>

The new methods available are:

* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->

<!-- README_GGUF.md-provided-files start -->
## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [mixtralnt-4x7b-test.Q2_K.gguf](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF/blob/main/mixtralnt-4x7b-test.Q2_K.gguf) | Q2_K | 2 | 8.06 GB| 10.56 GB | smallest, significant quality loss - not recommended for most purposes |
| [mixtralnt-4x7b-test.Q3_K_S.gguf](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF/blob/main/mixtralnt-4x7b-test.Q3_K_S.gguf) | Q3_K_S | 3 | 10.43 GB| 12.93 GB | very small, high quality loss |
| [mixtralnt-4x7b-test.Q3_K_M.gguf](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF/blob/main/mixtralnt-4x7b-test.Q3_K_M.gguf) | Q3_K_M | 3 | 10.52 GB| 13.02 GB | very small, high quality loss |
| [mixtralnt-4x7b-test.Q3_K_L.gguf](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF/blob/main/mixtralnt-4x7b-test.Q3_K_L.gguf) | Q3_K_L | 3 | 10.61 GB| 13.11 GB | small, substantial quality loss |
| [mixtralnt-4x7b-test.Q4_0.gguf](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF/blob/main/mixtralnt-4x7b-test.Q4_0.gguf) | Q4_0 | 4 | 13.62 GB| 16.12 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [mixtralnt-4x7b-test.Q4_K_S.gguf](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF/blob/main/mixtralnt-4x7b-test.Q4_K_S.gguf) | Q4_K_S | 4 | 13.62 GB| 16.12 GB | small, greater quality loss |
| [mixtralnt-4x7b-test.Q4_K_M.gguf](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF/blob/main/mixtralnt-4x7b-test.Q4_K_M.gguf) | Q4_K_M | 4 | 13.64 GB| 16.14 GB | medium, balanced quality - recommended |
| [mixtralnt-4x7b-test.Q5_0.gguf](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF/blob/main/mixtralnt-4x7b-test.Q5_0.gguf) | Q5_0 | 5 | 16.63 GB| 19.13 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [mixtralnt-4x7b-test.Q5_K_S.gguf](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF/blob/main/mixtralnt-4x7b-test.Q5_K_S.gguf) | Q5_K_S | 5 | 16.63 GB| 19.13 GB | large, low quality loss - recommended |
| [mixtralnt-4x7b-test.Q5_K_M.gguf](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF/blob/main/mixtralnt-4x7b-test.Q5_K_M.gguf) | Q5_K_M | 5 | 16.63 GB| 19.13 GB | large, very low quality loss - recommended |
| [mixtralnt-4x7b-test.Q6_K.gguf](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF/blob/main/mixtralnt-4x7b-test.Q6_K.gguf) | Q6_K | 6 | 19.82 GB| 22.32 GB | very large, extremely low quality loss |
| [mixtralnt-4x7b-test.Q8_0.gguf](https://huggingface.co./TheBloke/mixtralnt-4x7b-test-GGUF/blob/main/mixtralnt-4x7b-test.Q8_0.gguf) | Q8_0 | 8 | 25.67 GB| 28.17 GB | very large, extremely low quality loss - not recommended |

**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.



<!-- README_GGUF.md-provided-files end -->

<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files

**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.


### On the command line, including multiple files at once

I recommend using the `huggingface-hub` Python library:

```shell
pip3 install huggingface-hub
```

Then you can download any individual model file to the current directory, at high speed, with a command like this:

```shell
huggingface-cli download TheBloke/mixtralnt-4x7b-test-GGUF mixtralnt-4x7b-test.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```

<details>
  <summary>More advanced huggingface-cli download usage (click to read)</summary>

You can also download multiple files at once with a pattern:

```shell
huggingface-cli download TheBloke/mixtralnt-4x7b-test-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```

For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co./docs/huggingface_hub/guides/download#download-from-the-cli).

To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:

```shell
pip3 install hf_transfer
```

And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:

```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/mixtralnt-4x7b-test-GGUF mixtralnt-4x7b-test.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```

Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->

<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command

Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.

```shell
./main -ngl 35 -m mixtralnt-4x7b-test.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}"
```

Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.

If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run in `text-generation-webui`

Not currently supported

## How to run from Python code

Not currently supported


<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

<!-- original-model-card start -->
# Original model card: Charles Goddard's Mixtralnt 4X7B Test


# Mixtraln't 4x7B

Oh boy, a new model architecture in Transformers! Time to do profane things with it.

What if instead of training a MoE from scratch, we took some pre-trained Mistral models and shoved them in a little clown car?


Uses parts from the following models:
* [Q-bert/MetaMath-Cybertron-Starling](https://huggingface.co./Q-bert/MetaMath-Cybertron-Starling)
* [NeverSleep/Noromaid-7b-v0.1.1](https://huggingface.co./NeverSleep/Noromaid-7b-v0.1.1)
* [teknium/Mistral-Trismegistus-7B](https://huggingface.co./teknium/Mistral-Trismegistus-7B)
* [meta-math/MetaMath-Mistral-7B](https://huggingface.co./meta-math/MetaMath-Mistral-7B)
* [PocketDoc/Dans-AdventurousWinds-Mk2-7b](https://huggingface.co./PocketDoc/Dans-AdventurousWinds-Mk2-7b)


Works and generates coherent text. The big question here is if the hack I used to populate the MoE gates works well enough to take advantage of all of the experts. Let's find out!

Prompt format: maybe alpaca??? or chatml??? life is full of mysteries

<!-- original-model-card end -->