File size: 31,273 Bytes
2692e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
---
base_model: fblgit/juanako-7b-UNA
datasets:
- HuggingFaceH4/ultrafeedback_binarized
inference: false
license: apache-2.0
model-index:
- name: juanako-7b-UNA
  results:
  - dataset:
      config: multiple_choice
      name: truthful_qa
      split: validation
      type: text-generation
    metrics:
    - type: accuracy
      value: 65.13
      verified: true
    task:
      name: TruthfulQA (MC2)
      type: text-generation
  - dataset:
      config: ARC-Challenge
      name: ai2_arc
      split: test
      type: text-generation
    metrics:
    - type: accuracy
      value: 68.17
      verified: true
    task:
      name: ARC-Challenge
      type: text-generation
  - dataset:
      name: Rowan/hellaswag
      split: test
      type: text-generation
    metrics:
    - type: accuracy
      value: 85.34
      verified: true
    task:
      name: HellaSwag
      type: text-generation
  - dataset:
      config: winogrande_debiased
      name: winogrande
      split: test
      type: text-generation
    metrics:
    - type: accuracy
      value: 78.85
      verified: true
    task:
      name: Winogrande
      type: text-generation
  - dataset:
      config: all
      name: cais/mmlu
      split: test
      type: text-generation
    metrics:
    - type: accuracy
      value: 62.47
      verified: true
    task:
      name: MMLU
      type: text-generation
  - dataset:
      name: piqa
      split: test
      type: text-generation
    metrics:
    - type: accuracy
      value: 83.57
    task:
      name: PiQA
      type: text-generation
  - dataset:
      name: drop
      split: validation
      type: text-generation
    metrics:
    - type: accuracy
      value: 38.74
      verified: true
    task:
      name: DROP
      type: text-generation
  - dataset:
      config: pubmed_qa_artificial_bigbio_qa
      name: bigbio/pubmed_qa
      split: validation
      type: text-generation
    metrics:
    - type: accuracy
      value: 76.0
    task:
      name: PubMedQA
      type: text-generation
model_creator: FBL
model_name: Juanako 7B UNA
model_type: mistral
prompt_template: '<|im_start|>system

  {system_message}<|im_end|>

  <|im_start|>user

  {prompt}<|im_end|>

  <|im_start|>assistant

  '
quantized_by: TheBloke
tags:
- alignment-handbook
- generated_from_trainer
- juanako
- mistral
- UNA
---
<!-- markdownlint-disable MD041 -->

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Juanako 7B UNA - GPTQ
- Model creator: [FBL](https://huggingface.co./fblgit)
- Original model: [Juanako 7B UNA](https://huggingface.co./fblgit/juanako-7b-UNA)

<!-- description start -->
# Description

This repo contains GPTQ model files for [FBL's Juanako 7B UNA](https://huggingface.co./fblgit/juanako-7b-UNA).

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).

<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co./TheBloke/juanako-7B-UNA-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co./TheBloke/juanako-7B-UNA-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co./TheBloke/juanako-7B-UNA-GGUF)
* [FBL's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co./fblgit/juanako-7b-UNA)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: ChatML

```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

```

<!-- prompt-template end -->



<!-- README_GPTQ.md-compatible clients start -->
## Known compatible clients / servers

These GPTQ models are known to work in the following inference servers/webuis.

- [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
- [KoboldAI United](https://github.com/henk717/koboldai)
- [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)

This may not be a complete list; if you know of others, please let me know!
<!-- README_GPTQ.md-compatible clients end -->

<!-- README_GPTQ.md-provided-files start -->
## Provided files, and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch.  See below for instructions on fetching from different branches.

Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.

<details>
  <summary>Explanation of GPTQ parameters</summary>

- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.

</details>

| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
| [main](https://huggingface.co./TheBloke/juanako-7B-UNA-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co./datasets/VMware/open-instruct/viewer/) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | 
| [gptq-4bit-32g-actorder_True](https://huggingface.co./TheBloke/juanako-7B-UNA-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co./datasets/VMware/open-instruct/viewer/) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | 
| [gptq-8bit--1g-actorder_True](https://huggingface.co./TheBloke/juanako-7B-UNA-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co./datasets/VMware/open-instruct/viewer/) | 4096 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | 
| [gptq-8bit-128g-actorder_True](https://huggingface.co./TheBloke/juanako-7B-UNA-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co./datasets/VMware/open-instruct/viewer/) | 4096 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | 
| [gptq-8bit-32g-actorder_True](https://huggingface.co./TheBloke/juanako-7B-UNA-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co./datasets/VMware/open-instruct/viewer/) | 4096 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | 
| [gptq-4bit-64g-actorder_True](https://huggingface.co./TheBloke/juanako-7B-UNA-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co./datasets/VMware/open-instruct/viewer/) | 4096 | 4.29 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |

<!-- README_GPTQ.md-provided-files end -->

<!-- README_GPTQ.md-download-from-branches start -->
## How to download, including from branches

### In text-generation-webui

To download from the `main` branch, enter `TheBloke/juanako-7B-UNA-GPTQ` in the "Download model" box.

To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/juanako-7B-UNA-GPTQ:gptq-4bit-32g-actorder_True`

### From the command line

I recommend using the `huggingface-hub` Python library:

```shell
pip3 install huggingface-hub
```

To download the `main` branch to a folder called `juanako-7B-UNA-GPTQ`:

```shell
mkdir juanako-7B-UNA-GPTQ
huggingface-cli download TheBloke/juanako-7B-UNA-GPTQ --local-dir juanako-7B-UNA-GPTQ --local-dir-use-symlinks False
```

To download from a different branch, add the `--revision` parameter:

```shell
mkdir juanako-7B-UNA-GPTQ
huggingface-cli download TheBloke/juanako-7B-UNA-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir juanako-7B-UNA-GPTQ --local-dir-use-symlinks False
```

<details>
  <summary>More advanced huggingface-cli download usage</summary>

If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.

The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.

For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co./docs/huggingface_hub/guides/download#download-from-the-cli).

To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:

```shell
pip3 install hf_transfer
```

And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:

```shell
mkdir juanako-7B-UNA-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/juanako-7B-UNA-GPTQ --local-dir juanako-7B-UNA-GPTQ --local-dir-use-symlinks False
```

Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>

### With `git` (**not** recommended)

To clone a specific branch with `git`, use a command like this:

```shell
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co./TheBloke/juanako-7B-UNA-GPTQ
```

Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)

<!-- README_GPTQ.md-download-from-branches end -->
<!-- README_GPTQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)

Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/juanako-7B-UNA-GPTQ`.

    - To download from a specific branch, enter for example `TheBloke/juanako-7B-UNA-GPTQ:gptq-4bit-32g-actorder_True`
    - see Provided Files above for the list of branches for each option.

3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `juanako-7B-UNA-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.

    - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.

9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!

<!-- README_GPTQ.md-text-generation-webui end -->

<!-- README_GPTQ.md-use-from-tgi start -->
## Serving this model from Text Generation Inference (TGI)

It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`

Example Docker parameters:

```shell
--model-id TheBloke/juanako-7B-UNA-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
```

Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):

```shell
pip3 install huggingface-hub
```

```python
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: {response}")
```
<!-- README_GPTQ.md-use-from-tgi end -->
<!-- README_GPTQ.md-use-from-python start -->
## Python code example: inference from this GPTQ model

### Install the necessary packages

Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

```shell
pip3 install --upgrade transformers optimum
# If using PyTorch 2.1 + CUDA 12.x:
pip3 install --upgrade auto-gptq
# or, if using PyTorch 2.1 + CUDA 11.x:
pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
```

If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:

```shell
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.5.1
pip3 install .
```

### Example Python code

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/juanako-7B-UNA-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=False,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_GPTQ.md-use-from-python end -->

<!-- README_GPTQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.

[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.

For a list of clients/servers, please see "Known compatible clients / servers", above.
<!-- README_GPTQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: FBL's Juanako 7B UNA


# juanako-7b-UNA (Uniform Neural Alignment)

This model is a fine-tuned version of [fblgit/juanako-7b-UNA-v2-phase-1](https://huggingface.co./fblgit/juanako-7b-UNA-v2-phase-1) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It outperforms in many aspects most of the current Mistral based models and is the **latest and most powerful juanako version as of now**.

## Scores

The official HuggingFace results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/results/blob/main/fblgit/juanako-7b-UNA/results_2023-11-28T08-33-33.965228.json)

| Model | Average ⬆️| ARC (25-s) ⬆️ | HellaSwag (10-s) ⬆️ | MMLU (5-s) ⬆️| TruthfulQA (MC) (0-s) ⬆️ | Winogrande (5-s) | GSM8K (5-s) | DROP (3-s) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
|[mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) | 50.32 | 59.58  | 83.31  | 64.16  | 42.15 | 78.37 | 18.12 | 6.14 |
| [Intel/neural-chat-7b-v3-1](https://huggingface.co./Intel/neural-chat-7b-v3-1) | 59.0 | 66.21 | 83.64 | 62.37  | 59.65 | 78.14 | 19.56 | 43.84 |
| [fblgit/juanako-7b-UNA](https://huggingface.co./fblgit/juanako-7b-UNA) | **59.91** | **68.17** | **85.34** | 62.47  | **65.13** | **78.85** | **20.7** | 38.74 |

It scores: **59.91** according HuggingFace LLM Leaderboard.
It scores: **65.1** with `big-refactor` branch of lm-eval-harness

Author [Xavier M.](mailto:[email protected]) @fblgit

## Model description

juanako uses UNA, Uniform Neural Alignment. A training technique that ease alignment between transformer layers yet to be published.

### Prompts
The following prompts showed positive results, it may depend the task and needs further experimentation but this should work for starters:
```
<|im_start|>system
- You are a helpful assistant chatbot trained by MosaicML.
- You answer questions.
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
<|im_start|>user
Explain QKV<|im_end|>
<|im_start|>assistant
```
```
### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!

### Human: Explain QKV
### Assistant:
```
```
[Round <|round|>]
问:Explain QKV
答:
```
```
[Round <|round|>]
Question:Explain QKV
Answer:
```
```
Question:Explain QKV
Answer:
```

## Evaluations (lm-eval big-refactor branch)

### TruthfulQA 0-Shot
```
|    Tasks     |Version|Filter|Metric|Value |   |Stderr|
|--------------|-------|------|------|-----:|---|-----:|
|truthfulqa_mc2|Yaml   |none  |acc   |0.6549|±  |0.0153|
```
### ARC 25-Shot
```
|    Tasks    |Version|Filter| Metric |Value |   |Stderr|
|-------------|-------|------|--------|-----:|---|-----:|
|arc_challenge|Yaml   |none  |acc     |0.6476|±  |0.0140|
|             |       |none  |acc_norm|0.6809|±  |0.0136|
```
### HellaSwag 10-Shot
```
|  Tasks  |Version|Filter| Metric |Value |   |Stderr|
|---------|-------|------|--------|-----:|---|-----:|
|hellaswag|Yaml   |none  |acc     |0.6703|±  |0.0047|
|         |       |none  |acc_norm|0.8520|±  |0.0035|
```
### GSM8k 5-Shot
```
|Tasks|Version|  Filter  |  Metric   |Value |   |Stderr|
|-----|-------|----------|-----------|-----:|---|-----:|
|gsm8k|Yaml   |get-answer|exact_match|0.4898|±  |0.0138|
```
### GPT Evaluations 0-Shot
```
|    Tasks     |Version|Filter|  Metric  |Value |   |Stderr|
|--------------|-------|------|----------|-----:|---|-----:|
|boolq         |Yaml   |none  |acc       |0.8703|±  |0.0059|
|lambada_openai|Yaml   |none  |perplexity|3.2598|±  |0.0705|
|              |       |none  |acc       |0.7336|±  |0.0062|
|piqa          |Yaml   |none  |acc       |0.8254|±  |0.0089|
|              |       |none  |acc_norm  |0.8292|±  |0.0088|
|sciq          |Yaml   |none  |acc       |0.9580|±  |0.0063|
|              |       |none  |acc_norm  |0.9130|±  |0.0089|
```
### MathQA 0-Shot
```
|Tasks |Version|Filter| Metric |Value |   |Stderr|
|------|-------|------|--------|-----:|---|-----:|
|mathqa|Yaml   |none  |acc     |0.3752|±  |0.0089|
|      |       |none  |acc_norm|0.3772|±  |0.0089|
```
### PiQa 1-Shot
```
|Tasks|Version|Filter| Metric |Value |   |Stderr|
|-----|-------|------|--------|-----:|---|-----:|
|piqa |Yaml   |none  |acc     |0.8308|±  |0.0087|
|     |       |none  |acc_norm|0.8357|±  |0.0086|
```
### Winogrande 5-Shot
```
|  Tasks   |Version|Filter|Metric|Value|   |Stderr|
|----------|-------|------|------|----:|---|-----:|
|winogrande|Yaml   |none  |acc   |0.768|±  |0.0119|
```
### PubMedQA 0-Shot
```
| Tasks  |Version|Filter|Metric|Value|   |Stderr|
|--------|-------|------|------|----:|---|-----:|
|pubmedqa|Yaml   |none  |acc   | 0.76|±  |0.0191|
```
### RACE 1-Shot
```
|Tasks|Version|Filter|Metric|Value |   |Stderr|
|-----|-------|------|------|-----:|---|-----:|
|race |Yaml   |none  |acc   |0.5282|±  |0.0154|
```
### MMLU 5-Shot (8-Bit)
```
|      Groups      |Version|Filter|Metric|Value |   |Stderr|
|------------------|-------|------|------|-----:|---|-----:|
|mmlu              |N/A    |none  |acc   |0.6137|±  |0.1243|
| - humanities     |N/A    |none  |acc   |0.5671|±  |0.1101|
| - other          |N/A    |none  |acc   |0.6859|±  |0.1164|
| - social_sciences|N/A    |none  |acc   |0.7195|±  |0.0713|
| - stem           |N/A    |none  |acc   |0.5087|±  |0.1297|
```
### DROP 3-Shot (8-Bit) (Instruct-Eval)
```
{'score': 0.49801113762927607}
{'drop': 49.8}
drop: 49.8
```

### CRASS 0-Shot (Instruct-Eval)
```
{'score': 0.8357664233576643}
{'crass': 83.58}
crass: 83.58
```

## Training Details

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 14
- gradient_accumulation_steps: 16
- total_train_batch_size: 224
- total_eval_batch_size: 14
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.4795        | 0.2   | 56   | 0.4958          | -1.3684        | -2.6385          | 0.7552             | 1.2701          | -265.3887      | -241.2612    | -2.2572         | -2.4922       |
| 0.4642        | 0.4   | 112  | 0.4859          | -1.0380        | -1.9769          | 0.7273             | 0.9389          | -258.7718      | -237.9569    | -2.2414         | -2.4751       |
| 0.4758        | 0.61  | 168  | 0.4808          | -1.2594        | -2.3704          | 0.7343             | 1.1110          | -262.7074      | -240.1708    | -2.2305         | -2.4633       |
| 0.4549        | 0.81  | 224  | 0.4768          | -1.1906        | -2.3201          | 0.7552             | 1.1295          | -262.2044      | -239.4827    | -2.2284         | -2.4610       |


### Framework versions

- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1

## Citations
If you find juanako useful please:

```
@misc{juanako7buna,
  title={Juanako: Uniform Neural Alignment}, 
  author={Xavier Murias},
  year={2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://huggingface.co./fblgit/juanako-7b-UNA}},
}
```

Thanks to all the brilliant humans behind the creation of AI, here some of the ones that we find relevant to our research. If you feel a citation is missing, please contact.
```
@misc{lin2021truthfulqa,
  title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
  author={Stephanie Lin and Jacob Hilton and Owain Evans},
  year={2021},
  eprint={2109.07958},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
@misc{tunstall2023zephyr,
      title={Zephyr: Direct Distillation of LM Alignment}, 
      author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
      year={2023},
      eprint={2310.16944},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
@inproceedings{Bisk2020,
  author = {Yonatan Bisk and Rowan Zellers and
            Ronan Le Bras and Jianfeng Gao
            and Yejin Choi},
  title = {PIQA: Reasoning about Physical Commonsense in
           Natural Language},
  booktitle = {Thirty-Fourth AAAI Conference on
               Artificial Intelligence},
  year = {2020},
}
@software{eval-harness,
  author       = {Gao, Leo and
                  Tow, Jonathan and
                  Biderman, Stella and
                  Black, Sid and
                  DiPofi, Anthony and
                  Foster, Charles and
                  Golding, Laurence and
                  Hsu, Jeffrey and
                  McDonell, Kyle and
                  Muennighoff, Niklas and
                  Phang, Jason and
                  Reynolds, Laria and
                  Tang, Eric and
                  Thite, Anish and
                  Wang, Ben and
                  Wang, Kevin and
                  Zou, Andy},
  title        = {A framework for few-shot language model evaluation},
  month        = sep,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.0.1},
  doi          = {10.5281/zenodo.5371628},
  url          = {https://doi.org/10.5281/zenodo.5371628}
}
@misc{rafailov2023direct,
    title={Direct Preference Optimization: Your Language Model is Secretly a Reward Model}, 
    author={Rafael Rafailov and Archit Sharma and Eric Mitchell and Stefano Ermon and Christopher D. Manning and Chelsea Finn},
    year={2023},
    eprint={2305.18290},
    archivePrefix={arXiv},
}
```