TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
This is a 4bit 128g GPTQ of chansung's gpt4-alpaca-lora-13b.
How to easily download and use this model in text-generation-webui
Open the text-generation-webui UI as normal.
- Click the Model tab.
- Under Download custom model or LoRA, enter
TheBloke/gpt4-alpaca-lora-13B-GPTQ-4bit-128g
. - Click Download.
- Wait until it says it's finished downloading.
- Click the Refresh icon next to Model in the top left.
- In the Model drop-down: choose the model you just downloaded,
gpt4-alpaca-lora-13B-GPTQ-4bit-128g
. - If you see an error in the bottom right, ignore it - it's temporary.
- Check that the
GPTQ parameters
are correct on the right:Bits = 4
,Groupsize = 128
,model_type = Llama
- Click Save settings for this model in the top right.
- Click Reload the Model in the top right.
- Once it says it's loaded, click the Text Generation tab and enter a prompt!
Command to create was:
CUDA_VISIBLE_DEVICES=0 python3 llama.py /content/gpt4-alpaca-lora-13B-HF c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors /content/gpt4-alpaca-lora-13B-GPTQ-4bit-128g.safetensors
Command to clone the latest Triton GPTQ-for-LLaMa repo for inference using llama_inference.py
, or in text-generation-webui
:
# Clone text-generation-webui, if you don't already have it
git clone https://github.com/oobabooga/text-generation-webui
# Make a repositories directory
mkdir -p text-generation-webui/repositories
cd text-generation-webui/repositories
# Clone the latest GPTQ-for-LLaMa code inside text-generation-webui
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa
There is also a no-act-order.safetensors
file which will work with oobabooga's fork of GPTQ-for-LLaMa; it does not require the latest GPTQ code.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute.
Thanks to the chirper.ai team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 闃挎槑, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikie艂, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card is below
This repository comes with LoRA checkpoint to make LLaMA into a chatbot like language model. The checkpoint is the output of instruction following fine-tuning process with the following settings on 8xA100(40G) DGX system.
- Training script: borrowed from the official Alpaca-LoRA implementation
- Training script:
python finetune.py \
--base_model='decapoda-research/llama-30b-hf' \
--data_path='alpaca_data_gpt4.json' \
--num_epochs=10 \
--cutoff_len=512 \
--group_by_length \
--output_dir='./gpt4-alpaca-lora-30b' \
--lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \
--lora_r=16 \
--batch_size=... \
--micro_batch_size=...
You can find how the training went from W&B report here.
- Downloads last month
- 30