Transformers
GGUF
llama
uncensored
TheBloke commited on
Commit
51b5171
·
1 Parent(s): 4a0868b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -18
README.md CHANGED
@@ -47,7 +47,7 @@ This repo contains GGUF format model files for [Eric Hartford's Wizardlm 7B Unce
47
  <!-- README_GGUF.md-about-gguf start -->
48
  ### About GGUF
49
 
50
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
51
 
52
  Here is an incomplate list of clients and libraries that are known to support GGUF:
53
 
@@ -85,7 +85,7 @@ A chat between a curious user and an artificial intelligence assistant. The assi
85
  <!-- compatibility_gguf start -->
86
  ## Compatibility
87
 
88
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
89
 
90
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
91
 
@@ -149,7 +149,7 @@ Then click Download.
149
  I recommend using the `huggingface-hub` Python library:
150
 
151
  ```shell
152
- pip3 install huggingface-hub>=0.17.1
153
  ```
154
 
155
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
@@ -178,25 +178,25 @@ pip3 install hf_transfer
178
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
179
 
180
  ```shell
181
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WizardLM-7B-uncensored-GGUF WizardLM-7B-uncensored.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
182
  ```
183
 
184
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
185
  </details>
186
  <!-- README_GGUF.md-how-to-download end -->
187
 
188
  <!-- README_GGUF.md-how-to-run start -->
189
  ## Example `llama.cpp` command
190
 
191
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
192
 
193
  ```shell
194
- ./main -ngl 32 -m WizardLM-7B-uncensored.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:"
195
  ```
196
 
197
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
198
 
199
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
200
 
201
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
202
 
@@ -210,22 +210,24 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
210
 
211
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
212
 
213
- ### How to load this model from Python using ctransformers
214
 
215
  #### First install the package
216
 
217
- ```bash
 
 
218
  # Base ctransformers with no GPU acceleration
219
- pip install ctransformers>=0.2.24
220
  # Or with CUDA GPU acceleration
221
- pip install ctransformers[cuda]>=0.2.24
222
- # Or with ROCm GPU acceleration
223
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
224
- # Or with Metal GPU acceleration for macOS systems
225
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
226
  ```
227
 
228
- #### Simple example code to load one of these GGUF models
229
 
230
  ```python
231
  from ctransformers import AutoModelForCausalLM
@@ -238,7 +240,7 @@ print(llm("AI is going to"))
238
 
239
  ## How to use with LangChain
240
 
241
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
242
 
243
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
244
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
47
  <!-- README_GGUF.md-about-gguf start -->
48
  ### About GGUF
49
 
50
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
51
 
52
  Here is an incomplate list of clients and libraries that are known to support GGUF:
53
 
 
85
  <!-- compatibility_gguf start -->
86
  ## Compatibility
87
 
88
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
89
 
90
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
91
 
 
149
  I recommend using the `huggingface-hub` Python library:
150
 
151
  ```shell
152
+ pip3 install huggingface-hub
153
  ```
154
 
155
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
 
178
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
179
 
180
  ```shell
181
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WizardLM-7B-uncensored-GGUF WizardLM-7B-uncensored.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
182
  ```
183
 
184
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
185
  </details>
186
  <!-- README_GGUF.md-how-to-download end -->
187
 
188
  <!-- README_GGUF.md-how-to-run start -->
189
  ## Example `llama.cpp` command
190
 
191
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
192
 
193
  ```shell
194
+ ./main -ngl 32 -m WizardLM-7B-uncensored.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:"
195
  ```
196
 
197
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
198
 
199
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
200
 
201
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
202
 
 
210
 
211
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
212
 
213
+ ### How to load this model in Python code, using ctransformers
214
 
215
  #### First install the package
216
 
217
+ Run one of the following commands, according to your system:
218
+
219
+ ```shell
220
  # Base ctransformers with no GPU acceleration
221
+ pip install ctransformers
222
  # Or with CUDA GPU acceleration
223
+ pip install ctransformers[cuda]
224
+ # Or with AMD ROCm GPU acceleration (Linux only)
225
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
226
+ # Or with Metal GPU acceleration for macOS systems only
227
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
228
  ```
229
 
230
+ #### Simple ctransformers example code
231
 
232
  ```python
233
  from ctransformers import AutoModelForCausalLM
 
240
 
241
  ## How to use with LangChain
242
 
243
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
244
 
245
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
246
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)