TheBloke commited on
Commit
b966fcc
·
1 Parent(s): 070eaf8

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +194 -0
README.md ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ license: other
4
+ ---
5
+
6
+ <!-- header start -->
7
+ <div style="width: 100%;">
8
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
9
+ </div>
10
+ <div style="display: flex; justify-content: space-between; width: 100%;">
11
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
13
+ </div>
14
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
16
+ </div>
17
+ </div>
18
+ <!-- header end -->
19
+
20
+ # Open BMB's UltraLM 13B GPTQ
21
+
22
+ These files are GPTQ 4bit model files for [Open BMB's UltraLM 13B](https://huggingface.co/openbmb/UltraLM-13b).
23
+
24
+ It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
25
+
26
+ ## Repositories available
27
+
28
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/UltraLM-13B-GPTQ)
29
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/UltraLM-13B-GGML)
30
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/UltraLM-13B-fp16)
31
+
32
+ ## How to easily download and use this model in text-generation-webui
33
+
34
+ Please make sure you're using the latest version of text-generation-webui
35
+
36
+ 1. Click the **Model tab**.
37
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/UltraLM-13B-GPTQ`.
38
+ 3. Click **Download**.
39
+ 4. The model will start downloading. Once it's finished it will say "Done"
40
+ 5. In the top left, click the refresh icon next to **Model**.
41
+ 6. In the **Model** dropdown, choose the model you just downloaded: `UltraLM-13B-GPTQ`
42
+ 7. The model will automatically load, and is now ready for use!
43
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
44
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
45
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
46
+
47
+ ## How to use this GPTQ model from Python code
48
+
49
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
50
+
51
+ `pip install auto-gptq`
52
+
53
+ Then try the following example code:
54
+
55
+ ```python
56
+ from transformers import AutoTokenizer, pipeline, logging
57
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
58
+ import argparse
59
+
60
+ model_name_or_path = "TheBloke/UltraLM-13B-GPTQ"
61
+ model_basename = "ultralm-13b-GPTQ-4bit-128g.no-act.order"
62
+
63
+ use_triton = False
64
+
65
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
66
+
67
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
68
+ model_basename=model_basename,
69
+ use_safetensors=True,
70
+ trust_remote_code=False,
71
+ device="cuda:0",
72
+ use_triton=use_triton,
73
+ quantize_config=None)
74
+
75
+ # Note: check the prompt template is correct for this model.
76
+ prompt = "Tell me about AI"
77
+ prompt_template=f'''USER: {prompt}
78
+ ASSISTANT:'''
79
+
80
+ print("\n\n*** Generate:")
81
+
82
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
83
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
84
+ print(tokenizer.decode(output[0]))
85
+
86
+ # Inference can also be done using transformers' pipeline
87
+
88
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
89
+ logging.set_verbosity(logging.CRITICAL)
90
+
91
+ print("*** Pipeline:")
92
+ pipe = pipeline(
93
+ "text-generation",
94
+ model=model,
95
+ tokenizer=tokenizer,
96
+ max_new_tokens=512,
97
+ temperature=0.7,
98
+ top_p=0.95,
99
+ repetition_penalty=1.15
100
+ )
101
+
102
+ print(pipe(prompt_template)[0]['generated_text'])
103
+ ```
104
+
105
+ ## Provided files
106
+
107
+ **ultralm-13b-GPTQ-4bit-128g.no-act.order.safetensors**
108
+
109
+ This will work with AutoGPTQ, ExLlama, and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
110
+
111
+ It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
112
+
113
+ * `ultralm-13b-GPTQ-4bit-128g.no-act.order.safetensors`
114
+ * Works with AutoGPTQ in CUDA or Triton modes.
115
+ * LLaMa models also work with [ExLlama](https://github.com/turboderp/exllama}, which usually provides much higher performance, and uses less VRAM, than AutoGPTQ.
116
+ * Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
117
+ * Works with text-generation-webui, including one-click-installers.
118
+ * Parameters: Groupsize = 128. Act Order / desc_act = False.
119
+
120
+ <!-- footer start -->
121
+ ## Discord
122
+
123
+ For further support, and discussions on these models and AI in general, join us at:
124
+
125
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
126
+
127
+ ## Thanks, and how to contribute.
128
+
129
+ Thanks to the [chirper.ai](https://chirper.ai) team!
130
+
131
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
132
+
133
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
134
+
135
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
136
+
137
+ * Patreon: https://patreon.com/TheBlokeAI
138
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
139
+
140
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
141
+
142
+ **Patreon special mentions**: zynix, ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.
143
+
144
+ Thank you to all my generous patrons and donaters!
145
+
146
+ <!-- footer end -->
147
+
148
+ # Original model card: Open BMB's UltraLM 13B
149
+
150
+ # UltraLM-13b
151
+
152
+ <!-- Provide a quick summary of what the model is/does. -->
153
+
154
+ This is UltraLM-13b delta weights, a chat language model trained upon [UltraChat](https://github.com/thunlp/UltraChat)
155
+
156
+
157
+ ## Model Details
158
+
159
+ ### Model Description
160
+
161
+ <!-- Provide a longer summary of what this model is. -->
162
+
163
+ The model is fine-tuned based on LLaMA-13b with a multi-turn chat-format template as below
164
+
165
+ ```
166
+ User: instruction 1<eos_token>
167
+ Assistant: response 1<eos_token>
168
+ User: instruction 2<eos_token>
169
+ Assistant: response 2<eos_token>
170
+ ...
171
+ ```
172
+
173
+ - **License:** UltraLM is based on LLaMA and should be used under LLaMA's [model license](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md).
174
+ - **Finetuned from model:** LLaMA-13b
175
+ - **Finetuned on data:** [UltraChat](https://github.com/thunlp/UltraChat)
176
+
177
+ ### Model Sources
178
+
179
+ <!-- Provide the basic links for the model. -->
180
+
181
+ - **Repository:** [UltraChat](https://github.com/thunlp/UltraChat)
182
+ - **Paper:** [arxiv](https://arxiv.org/abs/2305.14233)
183
+ - **Demo:** [More Information Needed]
184
+
185
+ ## Uses
186
+
187
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
188
+ To use this model, you need to [recover](https://github.com/thunlp/UltraChat/tree/main/UltraLM) the full model from the delta weights and perform inference following the template below:
189
+
190
+ ```
191
+ [Optional]User: system prompt<eos_token>
192
+ User: user input<eos_token>
193
+ Assistant:
194
+ ```