TheBloke commited on
Commit
f6f52e8
·
1 Parent(s): 7cf244b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +400 -0
README.md ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BlueNipples/TimeCrystal-l2-13B
3
+ inference: false
4
+ license: apache-2.0
5
+ model_creator: Matthew Andrews
6
+ model_name: Timecrystal L2 13B
7
+ model_type: llama
8
+ prompt_template: 'Below is an instruction that describes a task. Write a response
9
+ that appropriately completes the request.
10
+
11
+
12
+ ### Instruction:
13
+
14
+ {prompt}
15
+
16
+
17
+ ### Response:
18
+
19
+ '
20
+ quantized_by: TheBloke
21
+ tags:
22
+ - llama-2
23
+ - roleplaying
24
+ ---
25
+ <!-- markdownlint-disable MD041 -->
26
+
27
+ <!-- header start -->
28
+ <!-- 200823 -->
29
+ <div style="width: auto; margin-left: auto; margin-right: auto">
30
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
31
+ </div>
32
+ <div style="display: flex; justify-content: space-between; width: 100%;">
33
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
34
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
35
+ </div>
36
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
37
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
38
+ </div>
39
+ </div>
40
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
41
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
42
+ <!-- header end -->
43
+
44
+ # Timecrystal L2 13B - AWQ
45
+ - Model creator: [Matthew Andrews](https://huggingface.co/BlueNipples)
46
+ - Original model: [Timecrystal L2 13B](https://huggingface.co/BlueNipples/TimeCrystal-l2-13B)
47
+
48
+ <!-- description start -->
49
+ ## Description
50
+
51
+ This repo contains AWQ model files for [Matthew Andrews's Timecrystal L2 13B](https://huggingface.co/BlueNipples/TimeCrystal-l2-13B).
52
+
53
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
54
+
55
+
56
+ ### About AWQ
57
+
58
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
59
+
60
+ It is supported by:
61
+
62
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
63
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
64
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
65
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
66
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
67
+
68
+ <!-- description end -->
69
+ <!-- repositories-available start -->
70
+ ## Repositories available
71
+
72
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/TimeCrystal-L2-13B-AWQ)
73
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/TimeCrystal-L2-13B-GPTQ)
74
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/TimeCrystal-L2-13B-GGUF)
75
+ * [Matthew Andrews's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/BlueNipples/TimeCrystal-l2-13B)
76
+ <!-- repositories-available end -->
77
+
78
+ <!-- prompt-template start -->
79
+ ## Prompt template: Alpaca
80
+
81
+ ```
82
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
83
+
84
+ ### Instruction:
85
+ {prompt}
86
+
87
+ ### Response:
88
+
89
+ ```
90
+
91
+ <!-- prompt-template end -->
92
+ <!-- licensing start -->
93
+ ## Licensing
94
+
95
+ The creator of the source model has listed its license as `apache-2.0`, and this quantization has therefore used that same license.
96
+
97
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
98
+
99
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Matthew Andrews's Timecrystal L2 13B](https://huggingface.co/BlueNipples/TimeCrystal-l2-13B).
100
+ <!-- licensing end -->
101
+ <!-- README_AWQ.md-provided-files start -->
102
+ ## Provided files, and AWQ parameters
103
+
104
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
105
+
106
+ Models are released as sharded safetensors files.
107
+
108
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
109
+ | ------ | ---- | -- | ----------- | ------- | ---- |
110
+ | [main](https://huggingface.co/TheBloke/TimeCrystal-L2-13B-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 4096 | 7.25 GB
111
+
112
+ <!-- README_AWQ.md-provided-files end -->
113
+
114
+ <!-- README_AWQ.md-text-generation-webui start -->
115
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
116
+
117
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
118
+
119
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
120
+
121
+ 1. Click the **Model tab**.
122
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/TimeCrystal-L2-13B-AWQ`.
123
+ 3. Click **Download**.
124
+ 4. The model will start downloading. Once it's finished it will say "Done".
125
+ 5. In the top left, click the refresh icon next to **Model**.
126
+ 6. In the **Model** dropdown, choose the model you just downloaded: `TimeCrystal-L2-13B-AWQ`
127
+ 7. Select **Loader: AutoAWQ**.
128
+ 8. Click Load, and the model will load and is now ready for use.
129
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
130
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
131
+ <!-- README_AWQ.md-text-generation-webui end -->
132
+
133
+ <!-- README_AWQ.md-use-from-vllm start -->
134
+ ## Multi-user inference server: vLLM
135
+
136
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
137
+
138
+ - Please ensure you are using vLLM version 0.2 or later.
139
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
140
+
141
+ For example:
142
+
143
+ ```shell
144
+ python3 -m vllm.entrypoints.api_server --model TheBloke/TimeCrystal-L2-13B-AWQ --quantization awq --dtype auto
145
+ ```
146
+
147
+ - When using vLLM from Python code, again set `quantization=awq`.
148
+
149
+ For example:
150
+
151
+ ```python
152
+ from vllm import LLM, SamplingParams
153
+
154
+ prompts = [
155
+ "Tell me about AI",
156
+ "Write a story about llamas",
157
+ "What is 291 - 150?",
158
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
159
+ ]
160
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
161
+
162
+ ### Instruction:
163
+ {prompt}
164
+
165
+ ### Response:
166
+ '''
167
+
168
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
169
+
170
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
171
+
172
+ llm = LLM(model="TheBloke/TimeCrystal-L2-13B-AWQ", quantization="awq", dtype="auto")
173
+
174
+ outputs = llm.generate(prompts, sampling_params)
175
+
176
+ # Print the outputs.
177
+ for output in outputs:
178
+ prompt = output.prompt
179
+ generated_text = output.outputs[0].text
180
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
181
+ ```
182
+ <!-- README_AWQ.md-use-from-vllm start -->
183
+
184
+ <!-- README_AWQ.md-use-from-tgi start -->
185
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
186
+
187
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
188
+
189
+ Example Docker parameters:
190
+
191
+ ```shell
192
+ --model-id TheBloke/TimeCrystal-L2-13B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
193
+ ```
194
+
195
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
196
+
197
+ ```shell
198
+ pip3 install huggingface-hub
199
+ ```
200
+
201
+ ```python
202
+ from huggingface_hub import InferenceClient
203
+
204
+ endpoint_url = "https://your-endpoint-url-here"
205
+
206
+ prompt = "Tell me about AI"
207
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
208
+
209
+ ### Instruction:
210
+ {prompt}
211
+
212
+ ### Response:
213
+ '''
214
+
215
+ client = InferenceClient(endpoint_url)
216
+ response = client.text_generation(prompt,
217
+ max_new_tokens=128,
218
+ do_sample=True,
219
+ temperature=0.7,
220
+ top_p=0.95,
221
+ top_k=40,
222
+ repetition_penalty=1.1)
223
+
224
+ print(f"Model output: ", response)
225
+ ```
226
+ <!-- README_AWQ.md-use-from-tgi end -->
227
+
228
+ <!-- README_AWQ.md-use-from-python start -->
229
+ ## Inference from Python code using Transformers
230
+
231
+ ### Install the necessary packages
232
+
233
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
234
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
235
+
236
+ ```shell
237
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
238
+ ```
239
+
240
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
241
+
242
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
243
+
244
+ ```shell
245
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
246
+ ```
247
+
248
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
249
+
250
+ ```shell
251
+ pip3 uninstall -y autoawq
252
+ git clone https://github.com/casper-hansen/AutoAWQ
253
+ cd AutoAWQ
254
+ pip3 install .
255
+ ```
256
+
257
+ ### Transformers example code (requires Transformers 4.35.0 and later)
258
+
259
+ ```python
260
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
261
+
262
+ model_name_or_path = "TheBloke/TimeCrystal-L2-13B-AWQ"
263
+
264
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
265
+ model = AutoModelForCausalLM.from_pretrained(
266
+ model_name_or_path,
267
+ low_cpu_mem_usage=True,
268
+ device_map="cuda:0"
269
+ )
270
+
271
+ # Using the text streamer to stream output one token at a time
272
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
273
+
274
+ prompt = "Tell me about AI"
275
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
276
+
277
+ ### Instruction:
278
+ {prompt}
279
+
280
+ ### Response:
281
+ '''
282
+
283
+ # Convert prompt to tokens
284
+ tokens = tokenizer(
285
+ prompt_template,
286
+ return_tensors='pt'
287
+ ).input_ids.cuda()
288
+
289
+ generation_params = {
290
+ "do_sample": True,
291
+ "temperature": 0.7,
292
+ "top_p": 0.95,
293
+ "top_k": 40,
294
+ "max_new_tokens": 512,
295
+ "repetition_penalty": 1.1
296
+ }
297
+
298
+ # Generate streamed output, visible one token at a time
299
+ generation_output = model.generate(
300
+ tokens,
301
+ streamer=streamer,
302
+ **generation_params
303
+ )
304
+
305
+ # Generation without a streamer, which will include the prompt in the output
306
+ generation_output = model.generate(
307
+ tokens,
308
+ **generation_params
309
+ )
310
+
311
+ # Get the tokens from the output, decode them, print them
312
+ token_output = generation_output[0]
313
+ text_output = tokenizer.decode(token_output)
314
+ print("model.generate output: ", text_output)
315
+
316
+ # Inference is also possible via Transformers' pipeline
317
+ from transformers import pipeline
318
+
319
+ pipe = pipeline(
320
+ "text-generation",
321
+ model=model,
322
+ tokenizer=tokenizer,
323
+ **generation_params
324
+ )
325
+
326
+ pipe_output = pipe(prompt_template)[0]['generated_text']
327
+ print("pipeline output: ", pipe_output)
328
+
329
+ ```
330
+ <!-- README_AWQ.md-use-from-python end -->
331
+
332
+ <!-- README_AWQ.md-compatibility start -->
333
+ ## Compatibility
334
+
335
+ The files provided are tested to work with:
336
+
337
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
338
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
339
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
340
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
341
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
342
+
343
+ <!-- README_AWQ.md-compatibility end -->
344
+
345
+ <!-- footer start -->
346
+ <!-- 200823 -->
347
+ ## Discord
348
+
349
+ For further support, and discussions on these models and AI in general, join us at:
350
+
351
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
352
+
353
+ ## Thanks, and how to contribute
354
+
355
+ Thanks to the [chirper.ai](https://chirper.ai) team!
356
+
357
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
358
+
359
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
360
+
361
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
362
+
363
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
364
+
365
+ * Patreon: https://patreon.com/TheBlokeAI
366
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
367
+
368
+ **Special thanks to**: Aemon Algiz.
369
+
370
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
371
+
372
+
373
+ Thank you to all my generous patrons and donaters!
374
+
375
+ And thank you again to a16z for their generous grant.
376
+
377
+ <!-- footer end -->
378
+
379
+ # Original model card: Matthew Andrews's Timecrystal L2 13B
380
+
381
+ This 13B model, TimeCrystal-l2-13B is built to maximize logic and instruct following, whilst also increasing the vividness of prose found in Chronos based models like Mythomax, over the more romantic prose, hopefully without losing the elegent narrative structure touch of newer models like synthia and xwin. TLDR: Attempt at more clever, better prose.
382
+
383
+ Tentative test results: I'm not certain if logic/instruct was improved or not (haven't tested much), but the prose infusion seems to have worked really well.
384
+
385
+ It is built so:
386
+
387
+ SLERPS:
388
+ Amethyst + Openchat Super = OpenStone
389
+
390
+ MythoMax + Chronos = ChronoMax
391
+
392
+ ChronoMax + Amethyst = TimeStone
393
+
394
+ Gradient Merge:
395
+
396
+ TimeStone + OpenStone (0.9,0,0) = TimeCrystal
397
+
398
+ Props to all the mergers, fine tuners!
399
+
400
+ All models in Merge: Many, lol.