TheBloke commited on
Commit
5bf0b63
·
1 Parent(s): 414aa3d

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +39 -16
README.md CHANGED
@@ -49,27 +49,42 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
49
  <|prompter|>{prompt}<|endoftext|><|assistant|>
50
  ```
51
 
52
- ## Provided files
53
 
54
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
55
 
56
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
57
 
58
- | Branch | Bits | Group Size | Act Order (desc_act) | GPTQ Dataset | Size | ExLlama Compat? | Made With | Desc |
59
- | ------ | ---- | ---------- | -------------------- | ------------ | ---- | --------------- | --------- | ---- |
60
- | [main](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ/tree/main) | 4 | 128 | No | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 7.26 GB | Yes | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
61
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8.00 GB | Yes | AutoGPTQ | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
62
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 7.51 GB | Yes | AutoGPTQ | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
63
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 7.26 GB | Yes | AutoGPTQ | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
64
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 13.36 GB | No | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
65
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 13.65 GB | No | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  ## How to download from branches
68
 
69
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ:gptq-4bit-32g-actorder_True`
70
  - With Git, you can clone a branch with:
71
  ```
72
- git clone --branch --single-branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ
73
  ```
74
  - In Python Transformers code, the branch is the `revision` parameter; see below.
75
 
@@ -94,9 +109,19 @@ It is strongly recommended to use the text-generation-webui one-click-installers
94
 
95
  ## How to use this GPTQ model from Python code
96
 
97
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
98
 
99
- `GITHUB_ACTIONS=true pip install auto-gptq`
 
 
 
 
 
 
 
 
 
 
100
 
101
  Then try the following example code:
102
 
@@ -105,14 +130,12 @@ from transformers import AutoTokenizer, pipeline, logging
105
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
106
 
107
  model_name_or_path = "TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ"
108
- model_basename = "gptq_model-4bit-128g"
109
 
110
  use_triton = False
111
 
112
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
113
 
114
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
115
- model_basename=model_basename,
116
  use_safetensors=True,
117
  trust_remote_code=False,
118
  device="cuda:0",
@@ -120,11 +143,11 @@ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
120
  quantize_config=None)
121
 
122
  """
123
- To download from a specific branch, use the revision parameter, as in this example:
 
124
 
125
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
126
  revision="gptq-4bit-32g-actorder_True",
127
- model_basename=model_basename,
128
  use_safetensors=True,
129
  trust_remote_code=False,
130
  device="cuda:0",
 
49
  <|prompter|>{prompt}<|endoftext|><|assistant|>
50
  ```
51
 
52
+ ## Provided files and GPTQ parameters
53
 
54
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
55
 
56
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
57
 
58
+ All GPTQ files are made with AutoGPTQ.
59
+
60
+ <details>
61
+ <summary>Explanation of GPTQ parameters</summary>
62
+
63
+ - Bits: The bit size of the quantised model.
64
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
65
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
66
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
67
+ - GPTQ dataset: The dataset used for quantisation. The dataset used for quantisation can affect the quantisation accuracy. The dataset used for quantisation is not the same as the dataset used to train the model.
68
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only affects the quantisation accuracy on longer inference sequences.
69
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
70
+
71
+ </details>
72
+
73
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
74
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
75
+ | [main](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
76
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
77
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
78
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
79
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
80
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
81
 
82
  ## How to download from branches
83
 
84
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ:gptq-4bit-32g-actorder_True`
85
  - With Git, you can clone a branch with:
86
  ```
87
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ
88
  ```
89
  - In Python Transformers code, the branch is the `revision` parameter; see below.
90
 
 
109
 
110
  ## How to use this GPTQ model from Python code
111
 
112
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
113
 
114
+ ```
115
+ pip3 install auto-gptq
116
+ ```
117
+
118
+ If you have problems installing AutoGPTQ, please build from source instead:
119
+ ```
120
+ pip3 uninstall -y auto-gptq
121
+ git clone https://github.com/PanQiWei/AutoGPTQ
122
+ cd AutoGPTQ
123
+ pip3 install .
124
+ ```
125
 
126
  Then try the following example code:
127
 
 
130
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
131
 
132
  model_name_or_path = "TheBloke/OpenAssistant-Llama2-13B-Orca-v2-8K-3166-GPTQ"
 
133
 
134
  use_triton = False
135
 
136
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
137
 
138
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
 
139
  use_safetensors=True,
140
  trust_remote_code=False,
141
  device="cuda:0",
 
143
  quantize_config=None)
144
 
145
  """
146
+ # To download from a specific branch, use the revision parameter, as in this example:
147
+ # Note that `revision` requires AutoGPTQ 0.3.1 or later!
148
 
149
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
150
  revision="gptq-4bit-32g-actorder_True",
 
151
  use_safetensors=True,
152
  trust_remote_code=False,
153
  device="cuda:0",