TheBloke commited on
Commit
b3dc16e
1 Parent(s): 581ea53

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -18
README.md CHANGED
@@ -1,12 +1,24 @@
1
  ---
 
2
  inference: false
3
  language:
4
  - en
5
- license: llama2
6
  model_creator: Gryphe
7
- model_link: https://huggingface.co/Gryphe/MythoLogic-Mini-7b
8
  model_name: Mythologic Mini 7B
9
  model_type: llama
 
 
 
 
 
 
 
 
 
 
 
 
10
  quantized_by: TheBloke
11
  ---
12
 
@@ -42,9 +54,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
42
  <!-- repositories-available start -->
43
  ## Repositories available
44
 
 
45
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ)
46
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GGUF)
47
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GGML)
48
  * [Gryphe's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Gryphe/MythoLogic-Mini-7b)
49
  <!-- repositories-available end -->
50
 
@@ -62,7 +74,15 @@ Below is an instruction that describes a task. Write a response that appropriate
62
  ```
63
 
64
  <!-- prompt-template end -->
 
 
 
 
65
 
 
 
 
 
66
  <!-- README_GPTQ.md-provided-files start -->
67
  ## Provided files and GPTQ parameters
68
 
@@ -87,22 +107,22 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
87
 
88
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
89
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
90
- | [main](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
91
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
92
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
93
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
94
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
95
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
96
 
97
  <!-- README_GPTQ.md-provided-files end -->
98
 
99
  <!-- README_GPTQ.md-download-from-branches start -->
100
  ## How to download from branches
101
 
102
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/MythoLogic-Mini-7B-GPTQ:gptq-4bit-32g-actorder_True`
103
  - With Git, you can clone a branch with:
104
  ```
105
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ
106
  ```
107
  - In Python Transformers code, the branch is the `revision` parameter; see below.
108
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -115,7 +135,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
115
 
116
  1. Click the **Model tab**.
117
  2. Under **Download custom model or LoRA**, enter `TheBloke/MythoLogic-Mini-7B-GPTQ`.
118
- - To download from a specific branch, enter for example `TheBloke/MythoLogic-Mini-7B-GPTQ:gptq-4bit-32g-actorder_True`
119
  - see Provided Files above for the list of branches for each option.
120
  3. Click **Download**.
121
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -163,10 +183,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
163
 
164
  model_name_or_path = "TheBloke/MythoLogic-Mini-7B-GPTQ"
165
  # To use a different branch, change revision
166
- # For example: revision="gptq-4bit-32g-actorder_True"
167
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
168
- torch_dtype=torch.float16,
169
  device_map="auto",
 
170
  revision="main")
171
 
172
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -184,7 +204,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
184
  print("\n\n*** Generate:")
185
 
186
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
187
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
188
  print(tokenizer.decode(output[0]))
189
 
190
  # Inference can also be done using transformers' pipeline
@@ -195,9 +215,11 @@ pipe = pipeline(
195
  model=model,
196
  tokenizer=tokenizer,
197
  max_new_tokens=512,
 
198
  temperature=0.7,
199
  top_p=0.95,
200
- repetition_penalty=1.15
 
201
  )
202
 
203
  print(pipe(prompt_template)[0]['generated_text'])
@@ -222,10 +244,12 @@ For further support, and discussions on these models and AI in general, join us
222
 
223
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
224
 
225
- ## Thanks, and how to contribute.
226
 
227
  Thanks to the [chirper.ai](https://chirper.ai) team!
228
 
 
 
229
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
230
 
231
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -237,7 +261,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
237
 
238
  **Special thanks to**: Aemon Algiz.
239
 
240
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
241
 
242
 
243
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/Gryphe/MythoLogic-Mini-7b
3
  inference: false
4
  language:
5
  - en
6
+ license: other
7
  model_creator: Gryphe
 
8
  model_name: Mythologic Mini 7B
9
  model_type: llama
10
+ prompt_template: 'Below is an instruction that describes a task. Write a response
11
+ that appropriately completes the request.
12
+
13
+
14
+ ### Instruction:
15
+
16
+ {prompt}
17
+
18
+
19
+ ### Response:
20
+
21
+ '
22
  quantized_by: TheBloke
23
  ---
24
 
 
54
  <!-- repositories-available start -->
55
  ## Repositories available
56
 
57
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-AWQ)
58
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ)
59
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GGUF)
 
60
  * [Gryphe's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Gryphe/MythoLogic-Mini-7b)
61
  <!-- repositories-available end -->
62
 
 
74
  ```
75
 
76
  <!-- prompt-template end -->
77
+ <!-- licensing start -->
78
+ ## Licensing
79
+
80
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
81
 
82
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
83
+
84
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Gryphe's Mythologic Mini 7B](https://huggingface.co/Gryphe/MythoLogic-Mini-7b).
85
+ <!-- licensing end -->
86
  <!-- README_GPTQ.md-provided-files start -->
87
  ## Provided files and GPTQ parameters
88
 
 
107
 
108
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
109
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
110
+ | [main](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, without Act Order and group size 128g. |
111
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
112
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
113
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
114
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
115
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
116
 
117
  <!-- README_GPTQ.md-provided-files end -->
118
 
119
  <!-- README_GPTQ.md-download-from-branches start -->
120
  ## How to download from branches
121
 
122
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/MythoLogic-Mini-7B-GPTQ:main`
123
  - With Git, you can clone a branch with:
124
  ```
125
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ
126
  ```
127
  - In Python Transformers code, the branch is the `revision` parameter; see below.
128
  <!-- README_GPTQ.md-download-from-branches end -->
 
135
 
136
  1. Click the **Model tab**.
137
  2. Under **Download custom model or LoRA**, enter `TheBloke/MythoLogic-Mini-7B-GPTQ`.
138
+ - To download from a specific branch, enter for example `TheBloke/MythoLogic-Mini-7B-GPTQ:main`
139
  - see Provided Files above for the list of branches for each option.
140
  3. Click **Download**.
141
  4. The model will start downloading. Once it's finished it will say "Done".
 
183
 
184
  model_name_or_path = "TheBloke/MythoLogic-Mini-7B-GPTQ"
185
  # To use a different branch, change revision
186
+ # For example: revision="main"
187
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
188
  device_map="auto",
189
+ trust_remote_code=False,
190
  revision="main")
191
 
192
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
204
  print("\n\n*** Generate:")
205
 
206
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
207
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
208
  print(tokenizer.decode(output[0]))
209
 
210
  # Inference can also be done using transformers' pipeline
 
215
  model=model,
216
  tokenizer=tokenizer,
217
  max_new_tokens=512,
218
+ do_sample=True,
219
  temperature=0.7,
220
  top_p=0.95,
221
+ top_k=40,
222
+ repetition_penalty=1.1
223
  )
224
 
225
  print(pipe(prompt_template)[0]['generated_text'])
 
244
 
245
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
246
 
247
+ ## Thanks, and how to contribute
248
 
249
  Thanks to the [chirper.ai](https://chirper.ai) team!
250
 
251
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
252
+
253
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
254
 
255
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
261
 
262
  **Special thanks to**: Aemon Algiz.
263
 
264
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
265
 
266
 
267
  Thank you to all my generous patrons and donaters!