TheBloke commited on
Commit
2c7ff11
1 Parent(s): 831af5b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -66
README.md CHANGED
@@ -1,10 +1,15 @@
1
  ---
 
2
  inference: false
3
  language:
4
  - en
5
  license: other
 
 
 
6
  model_type: llama
7
  pipeline_tag: text-generation
 
8
  tags:
9
  - facebook
10
  - meta
@@ -30,125 +35,153 @@ tags:
30
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
31
  <!-- header end -->
32
 
33
- # Meta's Llama 2 7b Chat GPTQ
 
 
34
 
35
- These files are GPTQ model files for [Meta's Llama 2 7b Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf).
 
 
 
36
 
37
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
38
 
 
 
39
  ## Repositories available
40
 
41
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ)
42
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGML)
43
- * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
 
 
44
 
 
45
  ## Prompt template: Llama-2-Chat
46
 
47
  ```
48
  [INST] <<SYS>>
49
  You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
50
  <</SYS>>
51
-
52
- {prompt} [/INST]
53
- ```
54
-
55
- To continue a conversation:
56
 
57
  ```
58
- [INST] <<SYS>>
59
- You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
60
- <</SYS>>
61
 
62
- {prompt} [/INST] {model_reply} [INST] {prompt} [/INST]
63
- ```
64
 
65
- ## Provided files
 
66
 
67
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
68
 
69
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
70
 
71
- | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
72
- | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
73
- | main | 4 | 128 | False | 3.90 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
74
- | gptq-4bit-32g-actorder_True | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
75
- | gptq-4bit-64g-actorder_True | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
76
- | gptq-4bit-128g-actorder_True | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
 
 
 
 
 
 
 
 
77
 
 
 
 
 
 
 
 
 
 
 
78
  ## How to download from branches
79
 
80
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Llama-2-7b-Chat-GPTQ:gptq-4bit-32g-actorder_True`
81
  - With Git, you can clone a branch with:
82
  ```
83
- git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ`
84
  ```
85
  - In Python Transformers code, the branch is the `revision` parameter; see below.
86
-
 
87
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
88
 
89
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
90
 
91
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
92
 
93
  1. Click the **Model tab**.
94
  2. Under **Download custom model or LoRA**, enter `TheBloke/Llama-2-7b-Chat-GPTQ`.
95
- - To download from a specific branch, enter for example `TheBloke/Llama-2-7b-Chat-GPTQ:gptq-4bit-32g-actorder_True`
96
  - see Provided Files above for the list of branches for each option.
97
  3. Click **Download**.
98
- 4. The model will start downloading. Once it's finished it will say "Done"
99
  5. In the top left, click the refresh icon next to **Model**.
100
  6. In the **Model** dropdown, choose the model you just downloaded: `Llama-2-7b-Chat-GPTQ`
101
  7. The model will automatically load, and is now ready for use!
102
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
103
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
104
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
105
 
 
106
  ## How to use this GPTQ model from Python code
107
 
108
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
109
 
110
- `GITHUB_ACTIONS=true pip install auto-gptq`
111
 
112
- Then try the following example code:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
  ```python
115
- from transformers import AutoTokenizer, pipeline, logging
116
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
117
 
118
  model_name_or_path = "TheBloke/Llama-2-7b-Chat-GPTQ"
119
- model_basename = "model"
120
-
121
- use_triton = False
 
 
 
122
 
123
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
124
 
125
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
126
- model_basename=model_basename,
127
- use_safetensors=True,
128
- trust_remote_code=True,
129
- device="cuda:0",
130
- use_triton=use_triton,
131
- quantize_config=None)
132
-
133
- """
134
- To download from a specific branch, use the revision parameter, as in this example:
135
-
136
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
137
- revision="gptq-4bit-32g-actorder_True",
138
- model_basename=model_basename,
139
- use_safetensors=True,
140
- trust_remote_code=True,
141
- device="cuda:0",
142
- quantize_config=None)
143
- """
144
-
145
  prompt = "Tell me about AI"
146
- system_message = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
147
  prompt_template=f'''[INST] <<SYS>>
148
- {system_message}
149
  <</SYS>>
 
150
 
151
- {prompt} [/INST]'''
152
 
153
  print("\n\n*** Generate:")
154
 
@@ -158,9 +191,6 @@ print(tokenizer.decode(output[0]))
158
 
159
  # Inference can also be done using transformers' pipeline
160
 
161
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
162
- logging.set_verbosity(logging.CRITICAL)
163
-
164
  print("*** Pipeline:")
165
  pipe = pipeline(
166
  "text-generation",
@@ -174,12 +204,17 @@ pipe = pipeline(
174
 
175
  print(pipe(prompt_template)[0]['generated_text'])
176
  ```
 
177
 
 
178
  ## Compatibility
179
 
180
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
181
 
182
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
183
 
184
  <!-- footer start -->
185
  <!-- 200823 -->
@@ -204,7 +239,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
204
 
205
  **Special thanks to**: Aemon Algiz.
206
 
207
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
208
 
209
 
210
  Thank you to all my generous patrons and donaters!
@@ -213,7 +248,7 @@ And thank you again to a16z for their generous grant.
213
 
214
  <!-- footer end -->
215
 
216
- # Original model card: Meta's Llama 2 7b Chat
217
 
218
  # **Llama 2**
219
  Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.
@@ -248,6 +283,8 @@ Meta developed and publicly released the Llama 2 family of large language models
248
 
249
  **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
250
 
 
 
251
  ## Intended Use
252
  **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
253
 
 
1
  ---
2
+ arxiv: 2307.09288
3
  inference: false
4
  language:
5
  - en
6
  license: other
7
+ model_creator: Meta Llama 2
8
+ model_link: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
9
+ model_name: Llama 2 7B Chat
10
  model_type: llama
11
  pipeline_tag: text-generation
12
+ quantized_by: TheBloke
13
  tags:
14
  - facebook
15
  - meta
 
35
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
36
  <!-- header end -->
37
 
38
+ # Llama 2 7B Chat - GPTQ
39
+ - Model creator: [Meta Llama 2](https://huggingface.co/meta-llama)
40
+ - Original model: [Llama 2 7B Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
41
 
42
+ <!-- description start -->
43
+ ## Description
44
+
45
+ This repo contains GPTQ model files for [Meta Llama 2's Llama 2 7B Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf).
46
 
47
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
48
 
49
+ <!-- description end -->
50
+ <!-- repositories-available start -->
51
  ## Repositories available
52
 
53
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ)
54
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGUF)
55
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGML)
56
+ * [Meta Llama 2's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
57
+ <!-- repositories-available end -->
58
 
59
+ <!-- prompt-template start -->
60
  ## Prompt template: Llama-2-Chat
61
 
62
  ```
63
  [INST] <<SYS>>
64
  You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
65
  <</SYS>>
66
+ {prompt}[/INST]
 
 
 
 
67
 
68
  ```
 
 
 
69
 
70
+ <!-- prompt-template end -->
 
71
 
72
+ <!-- README_GPTQ.md-provided-files start -->
73
+ ## Provided files and GPTQ parameters
74
 
75
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
76
 
77
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
78
 
79
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
80
+
81
+ <details>
82
+ <summary>Explanation of GPTQ parameters</summary>
83
+
84
+ - Bits: The bit size of the quantised model.
85
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
86
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
87
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
88
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
89
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
90
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
91
+
92
+ </details>
93
 
94
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
95
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
96
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
97
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
98
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
99
+ | [main](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ/tree/main) | 4 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
100
+
101
+ <!-- README_GPTQ.md-provided-files end -->
102
+
103
+ <!-- README_GPTQ.md-download-from-branches start -->
104
  ## How to download from branches
105
 
106
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Llama-2-7b-Chat-GPTQ:gptq-4bit-64g-actorder_True`
107
  - With Git, you can clone a branch with:
108
  ```
109
+ git clone --single-branch --branch gptq-4bit-64g-actorder_True https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ
110
  ```
111
  - In Python Transformers code, the branch is the `revision` parameter; see below.
112
+ <!-- README_GPTQ.md-download-from-branches end -->
113
+ <!-- README_GPTQ.md-text-generation-webui start -->
114
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
115
 
116
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
117
 
118
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
119
 
120
  1. Click the **Model tab**.
121
  2. Under **Download custom model or LoRA**, enter `TheBloke/Llama-2-7b-Chat-GPTQ`.
122
+ - To download from a specific branch, enter for example `TheBloke/Llama-2-7b-Chat-GPTQ:gptq-4bit-64g-actorder_True`
123
  - see Provided Files above for the list of branches for each option.
124
  3. Click **Download**.
125
+ 4. The model will start downloading. Once it's finished it will say "Done".
126
  5. In the top left, click the refresh icon next to **Model**.
127
  6. In the **Model** dropdown, choose the model you just downloaded: `Llama-2-7b-Chat-GPTQ`
128
  7. The model will automatically load, and is now ready for use!
129
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
130
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
131
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
132
+ <!-- README_GPTQ.md-text-generation-webui end -->
133
 
134
+ <!-- README_GPTQ.md-use-from-python start -->
135
  ## How to use this GPTQ model from Python code
136
 
137
+ ### Install the necessary packages
138
 
139
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
140
 
141
+ ```shell
142
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
143
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
144
+ ```
145
+
146
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
147
+
148
+ ```shell
149
+ pip3 uninstall -y auto-gptq
150
+ git clone https://github.com/PanQiWei/AutoGPTQ
151
+ cd AutoGPTQ
152
+ pip3 install .
153
+ ```
154
+
155
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
156
+
157
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
158
+ ```shell
159
+ pip3 uninstall -y transformers
160
+ pip3 install git+https://github.com/huggingface/transformers.git
161
+ ```
162
+
163
+ ### You can then use the following code
164
 
165
  ```python
166
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
167
 
168
  model_name_or_path = "TheBloke/Llama-2-7b-Chat-GPTQ"
169
+ # To use a different branch, change revision
170
+ # For example: revision="gptq-4bit-64g-actorder_True"
171
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
172
+ torch_dtype=torch.float16,
173
+ device_map="auto",
174
+ revision="main")
175
 
176
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  prompt = "Tell me about AI"
 
179
  prompt_template=f'''[INST] <<SYS>>
180
+ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
181
  <</SYS>>
182
+ {prompt}[/INST]
183
 
184
+ '''
185
 
186
  print("\n\n*** Generate:")
187
 
 
191
 
192
  # Inference can also be done using transformers' pipeline
193
 
 
 
 
194
  print("*** Pipeline:")
195
  pipe = pipeline(
196
  "text-generation",
 
204
 
205
  print(pipe(prompt_template)[0]['generated_text'])
206
  ```
207
+ <!-- README_GPTQ.md-use-from-python end -->
208
 
209
+ <!-- README_GPTQ.md-compatibility start -->
210
  ## Compatibility
211
 
212
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
213
+
214
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
215
 
216
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
217
+ <!-- README_GPTQ.md-compatibility end -->
218
 
219
  <!-- footer start -->
220
  <!-- 200823 -->
 
239
 
240
  **Special thanks to**: Aemon Algiz.
241
 
242
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
243
 
244
 
245
  Thank you to all my generous patrons and donaters!
 
248
 
249
  <!-- footer end -->
250
 
251
+ # Original model card: Meta Llama 2's Llama 2 7B Chat
252
 
253
  # **Llama 2**
254
  Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.
 
283
 
284
  **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
285
 
286
+ **Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288)
287
+
288
  ## Intended Use
289
  **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
290