TheBloke commited on
Commit
b9150a1
1 Parent(s): f3a5702

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +446 -0
README.md ADDED
@@ -0,0 +1,446 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Rijgersberg/GEITje-7B-chat
3
+ datasets:
4
+ - Rijgersberg/no_robots_nl
5
+ - Rijgersberg/ultrachat_10k_nl
6
+ inference: false
7
+ language:
8
+ - nl
9
+ license: apache-2.0
10
+ model-index:
11
+ - name: GEITje-7B-chat
12
+ results: []
13
+ model_creator: Edwin Rijgersberg
14
+ model_name: Geitje 7B Chat
15
+ model_type: mistral
16
+ pipeline_tag: conversational
17
+ prompt_template: '<|user|>
18
+
19
+ {prompt}
20
+
21
+ <|assistant|>
22
+
23
+ '
24
+ quantized_by: TheBloke
25
+ tags:
26
+ - generated_from_trainer
27
+ - GEITje
28
+ ---
29
+ <!-- markdownlint-disable MD041 -->
30
+
31
+ <!-- header start -->
32
+ <!-- 200823 -->
33
+ <div style="width: auto; margin-left: auto; margin-right: auto">
34
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
35
+ </div>
36
+ <div style="display: flex; justify-content: space-between; width: 100%;">
37
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
39
+ </div>
40
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
41
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
42
+ </div>
43
+ </div>
44
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
45
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
46
+ <!-- header end -->
47
+
48
+ # Geitje 7B Chat - AWQ
49
+ - Model creator: [Edwin Rijgersberg](https://huggingface.co/Rijgersberg)
50
+ - Original model: [Geitje 7B Chat](https://huggingface.co/Rijgersberg/GEITje-7B-chat)
51
+
52
+ <!-- description start -->
53
+ ## Description
54
+
55
+ This repo contains AWQ model files for [Edwin Rijgersberg's Geitje 7B Chat](https://huggingface.co/Rijgersberg/GEITje-7B-chat).
56
+
57
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
58
+
59
+
60
+ ### About AWQ
61
+
62
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
63
+
64
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
65
+
66
+ It is supported by:
67
+
68
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
69
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
70
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
71
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
72
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
73
+
74
+ <!-- description end -->
75
+ <!-- repositories-available start -->
76
+ ## Repositories available
77
+
78
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/GEITje-7B-chat-AWQ)
79
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/GEITje-7B-chat-GPTQ)
80
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/GEITje-7B-chat-GGUF)
81
+ * [Edwin Rijgersberg's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Rijgersberg/GEITje-7B-chat)
82
+ <!-- repositories-available end -->
83
+
84
+ <!-- prompt-template start -->
85
+ ## Prompt template: ToRA
86
+
87
+ ```
88
+ <|user|>
89
+ {prompt}
90
+ <|assistant|>
91
+
92
+ ```
93
+
94
+ <!-- prompt-template end -->
95
+
96
+
97
+ <!-- README_AWQ.md-provided-files start -->
98
+ ## Provided files, and AWQ parameters
99
+
100
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
101
+
102
+ Models are released as sharded safetensors files.
103
+
104
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
105
+ | ------ | ---- | -- | ----------- | ------- | ---- |
106
+ | [main](https://huggingface.co/TheBloke/GEITje-7B-chat-AWQ/tree/main) | 4 | 128 | [Dolly 15K Dutch](https://huggingface.co/datasets/BramVanroy/dolly-15k-dutch/viewer/) | 4096 | 4.15 GB
107
+
108
+ <!-- README_AWQ.md-provided-files end -->
109
+
110
+ <!-- README_AWQ.md-text-generation-webui start -->
111
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
112
+
113
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
114
+
115
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
116
+
117
+ 1. Click the **Model tab**.
118
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/GEITje-7B-chat-AWQ`.
119
+ 3. Click **Download**.
120
+ 4. The model will start downloading. Once it's finished it will say "Done".
121
+ 5. In the top left, click the refresh icon next to **Model**.
122
+ 6. In the **Model** dropdown, choose the model you just downloaded: `GEITje-7B-chat-AWQ`
123
+ 7. Select **Loader: AutoAWQ**.
124
+ 8. Click Load, and the model will load and is now ready for use.
125
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
126
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
127
+ <!-- README_AWQ.md-text-generation-webui end -->
128
+
129
+ <!-- README_AWQ.md-use-from-vllm start -->
130
+ ## Multi-user inference server: vLLM
131
+
132
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
133
+
134
+ - Please ensure you are using vLLM version 0.2 or later.
135
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
136
+
137
+ For example:
138
+
139
+ ```shell
140
+ python3 -m vllm.entrypoints.api_server --model TheBloke/GEITje-7B-chat-AWQ --quantization awq --dtype auto
141
+ ```
142
+
143
+ - When using vLLM from Python code, again set `quantization=awq`.
144
+
145
+ For example:
146
+
147
+ ```python
148
+ from vllm import LLM, SamplingParams
149
+
150
+ prompts = [
151
+ "Tell me about AI",
152
+ "Write a story about llamas",
153
+ "What is 291 - 150?",
154
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
155
+ ]
156
+ prompt_template=f'''<|user|>
157
+ {prompt}
158
+ <|assistant|>
159
+ '''
160
+
161
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
162
+
163
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
164
+
165
+ llm = LLM(model="TheBloke/GEITje-7B-chat-AWQ", quantization="awq", dtype="auto")
166
+
167
+ outputs = llm.generate(prompts, sampling_params)
168
+
169
+ # Print the outputs.
170
+ for output in outputs:
171
+ prompt = output.prompt
172
+ generated_text = output.outputs[0].text
173
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
174
+ ```
175
+ <!-- README_AWQ.md-use-from-vllm start -->
176
+
177
+ <!-- README_AWQ.md-use-from-tgi start -->
178
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
179
+
180
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
181
+
182
+ Example Docker parameters:
183
+
184
+ ```shell
185
+ --model-id TheBloke/GEITje-7B-chat-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
186
+ ```
187
+
188
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
189
+
190
+ ```shell
191
+ pip3 install huggingface-hub
192
+ ```
193
+
194
+ ```python
195
+ from huggingface_hub import InferenceClient
196
+
197
+ endpoint_url = "https://your-endpoint-url-here"
198
+
199
+ prompt = "Tell me about AI"
200
+ prompt_template=f'''<|user|>
201
+ {prompt}
202
+ <|assistant|>
203
+ '''
204
+
205
+ client = InferenceClient(endpoint_url)
206
+ response = client.text_generation(prompt,
207
+ max_new_tokens=128,
208
+ do_sample=True,
209
+ temperature=0.7,
210
+ top_p=0.95,
211
+ top_k=40,
212
+ repetition_penalty=1.1)
213
+
214
+ print(f"Model output: ", response)
215
+ ```
216
+ <!-- README_AWQ.md-use-from-tgi end -->
217
+
218
+ <!-- README_AWQ.md-use-from-python start -->
219
+ ## Inference from Python code using Transformers
220
+
221
+ ### Install the necessary packages
222
+
223
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
224
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
225
+
226
+ ```shell
227
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
228
+ ```
229
+
230
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
231
+
232
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
233
+
234
+ ```shell
235
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
236
+ ```
237
+
238
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
239
+
240
+ ```shell
241
+ pip3 uninstall -y autoawq
242
+ git clone https://github.com/casper-hansen/AutoAWQ
243
+ cd AutoAWQ
244
+ pip3 install .
245
+ ```
246
+
247
+ ### Transformers example code (requires Transformers 4.35.0 and later)
248
+
249
+ ```python
250
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
251
+
252
+ model_name_or_path = "TheBloke/GEITje-7B-chat-AWQ"
253
+
254
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
255
+ model = AutoModelForCausalLM.from_pretrained(
256
+ model_name_or_path,
257
+ low_cpu_mem_usage=True,
258
+ device_map="cuda:0"
259
+ )
260
+
261
+ # Using the text streamer to stream output one token at a time
262
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
263
+
264
+ prompt = "Tell me about AI"
265
+ prompt_template=f'''<|user|>
266
+ {prompt}
267
+ <|assistant|>
268
+ '''
269
+
270
+ # Convert prompt to tokens
271
+ tokens = tokenizer(
272
+ prompt_template,
273
+ return_tensors='pt'
274
+ ).input_ids.cuda()
275
+
276
+ generation_params = {
277
+ "do_sample": True,
278
+ "temperature": 0.7,
279
+ "top_p": 0.95,
280
+ "top_k": 40,
281
+ "max_new_tokens": 512,
282
+ "repetition_penalty": 1.1
283
+ }
284
+
285
+ # Generate streamed output, visible one token at a time
286
+ generation_output = model.generate(
287
+ tokens,
288
+ streamer=streamer,
289
+ **generation_params
290
+ )
291
+
292
+ # Generation without a streamer, which will include the prompt in the output
293
+ generation_output = model.generate(
294
+ tokens,
295
+ **generation_params
296
+ )
297
+
298
+ # Get the tokens from the output, decode them, print them
299
+ token_output = generation_output[0]
300
+ text_output = tokenizer.decode(token_output)
301
+ print("model.generate output: ", text_output)
302
+
303
+ # Inference is also possible via Transformers' pipeline
304
+ from transformers import pipeline
305
+
306
+ pipe = pipeline(
307
+ "text-generation",
308
+ model=model,
309
+ tokenizer=tokenizer,
310
+ **generation_params
311
+ )
312
+
313
+ pipe_output = pipe(prompt_template)[0]['generated_text']
314
+ print("pipeline output: ", pipe_output)
315
+
316
+ ```
317
+ <!-- README_AWQ.md-use-from-python end -->
318
+
319
+ <!-- README_AWQ.md-compatibility start -->
320
+ ## Compatibility
321
+
322
+ The files provided are tested to work with:
323
+
324
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
325
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
326
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
327
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
328
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
329
+
330
+ <!-- README_AWQ.md-compatibility end -->
331
+
332
+ <!-- footer start -->
333
+ <!-- 200823 -->
334
+ ## Discord
335
+
336
+ For further support, and discussions on these models and AI in general, join us at:
337
+
338
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
339
+
340
+ ## Thanks, and how to contribute
341
+
342
+ Thanks to the [chirper.ai](https://chirper.ai) team!
343
+
344
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
345
+
346
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
347
+
348
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
349
+
350
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
351
+
352
+ * Patreon: https://patreon.com/TheBlokeAI
353
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
354
+
355
+ **Special thanks to**: Aemon Algiz.
356
+
357
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
358
+
359
+
360
+ Thank you to all my generous patrons and donaters!
361
+
362
+ And thank you again to a16z for their generous grant.
363
+
364
+ <!-- footer end -->
365
+
366
+ # Original model card: Edwin Rijgersberg's Geitje 7B Chat
367
+
368
+
369
+ # GEITje-7B-chat
370
+
371
+ # GEITje-7B
372
+
373
+ GEITje is a large open Dutch language model with 7 billion parameters, based on Mistral 7B.
374
+ It has been further trained on 10 billion tokens of Dutch text.
375
+ This has improved its Dutch language skills and increased its knowledge of Dutch topics.
376
+
377
+
378
+ ## Model description
379
+
380
+ ### _Mistral_ – Base Model
381
+ GEITje is based on [Mistral 7B](https://mistral.ai/news/announcing-mistral-7b/).
382
+ It's a large open language model with 7 billion parameters,
383
+ trained by [Mistral AI](https://mistral.ai).
384
+ According to Mistral AI, the 7B model performs better than [Llama 2](https://ai.meta.com/llama/) 13B on all (English-language) benchmarks they tested it on.
385
+ Mistral 7B has been released under the Apache 2.0 open source license.
386
+
387
+
388
+ ### _GEITje_ – Trained Further on Dutch Texts
389
+ GEITje was created by further training Mistral 7B on no less than 10 billion tokens of Dutch text from the [Dutch Gigacorpus](http://gigacorpus.nl) and the [MADLAD-400](https://huggingface.co/datasets/allenai/MADLAD-400) web crawling corpus.
390
+ It is a so-called _full-parameter finetune_:
391
+ performed on all parameters.
392
+ It is not a [PEFT](https://huggingface.co/blog/peft) or [LoRA](https://huggingface.co/docs/peft/conceptual_guides/lora) finetune.
393
+ Like Mistral, GEITje has a _context length_ of 8,192 tokens.
394
+
395
+ ### _GEITje-chat_ – Finetuned for Dialogues
396
+ As a demonstration of GEITje's capabilities for chat applications, two initial chat variants of GEITje have also been finetuned: GEITje-chat and GEITje-chat-v2.
397
+ They can follow instructions, answer questions, and hold dialogues on a variety of topics.
398
+
399
+
400
+ ## More info
401
+ Read more about GEITje-chat in the [📄 README](https://github.com/Rijgersberg/GEITje/blob/main/README-en.md) on GitHub.
402
+
403
+
404
+ ## Training procedure
405
+
406
+ ### Training hyperparameters
407
+
408
+ The following hyperparameters were used during training:
409
+ - learning_rate: 1e-05
410
+ - train_batch_size: 2
411
+ - eval_batch_size: 8
412
+ - seed: 42
413
+ - gradient_accumulation_steps: 8
414
+ - total_train_batch_size: 16
415
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
416
+ - lr_scheduler_type: cosine
417
+ - lr_scheduler_warmup_ratio: 0.1
418
+ - num_epochs: 3
419
+
420
+ ### Training results
421
+
422
+ | Training Loss | Epoch | Step | Validation Loss |
423
+ |:-------------:|:-----:|:----:|:---------------:|
424
+ | 1.0263 | 0.2 | 236 | 0.9482 |
425
+ | 1.0368 | 0.4 | 472 | 0.9574 |
426
+ | 0.9503 | 0.6 | 708 | 0.9492 |
427
+ | 1.1419 | 0.8 | 944 | 0.9406 |
428
+ | 1.2161 | 1.0 | 1180 | 0.9317 |
429
+ | 0.6695 | 1.2 | 1416 | 0.9407 |
430
+ | 0.7379 | 1.4 | 1652 | 0.9350 |
431
+ | 0.7695 | 1.6 | 1888 | 0.9282 |
432
+ | 0.6795 | 1.8 | 2124 | 0.9218 |
433
+ | 0.6217 | 2.0 | 2360 | 0.9174 |
434
+ | 0.438 | 2.2 | 2596 | 0.9546 |
435
+ | 0.3719 | 2.39 | 2832 | 0.9546 |
436
+ | 0.4853 | 2.59 | 3068 | 0.9548 |
437
+ | 0.3852 | 2.79 | 3304 | 0.9548 |
438
+ | 0.48 | 2.99 | 3540 | 0.9548 |
439
+
440
+
441
+ ### Framework versions
442
+
443
+ - Transformers 4.36.0.dev0
444
+ - Pytorch 2.1.1+cu121
445
+ - Datasets 2.15.0
446
+ - Tokenizers 0.15.0