Upload folder using huggingface_hub
Browse files- MODEL_CARD.md +52 -0
- README.md +7 -0
- config.json +30 -23
- configuration_llama.py +176 -0
- modeling_llama.py +1020 -0
MODEL_CARD.md
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code Llama
|
2 |
+
|
3 |
+
## **Model Details**
|
4 |
+
|
5 |
+
**Model Developers** Meta AI
|
6 |
+
|
7 |
+
**Variations** Code Llama comes in three model sizes, and three variants:
|
8 |
+
1) Code Llama: our base models designed for general code synthesis and understanding
|
9 |
+
2) Code Llama - Python: designed specifically for Python
|
10 |
+
3) Code Llama - Instruct: for instruction following and safer deployment
|
11 |
+
|
12 |
+
All variants are available in sizes of 7B, 13B and 34B parameters.
|
13 |
+
|
14 |
+
**Input** Models input text only.
|
15 |
+
|
16 |
+
**Output** Models output text only.
|
17 |
+
|
18 |
+
**Model Architecture** Code Llama and its variants are autoregressive language models using optimized transformer architectures. Code Llama 7B and 13B additionally support infilling text generation. All models were fine-tuned with up to 16K tokens, and support up to 100K tokens at inference time.
|
19 |
+
|
20 |
+
**Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023.
|
21 |
+
|
22 |
+
**Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback.
|
23 |
+
|
24 |
+
**Licence** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/).
|
25 |
+
|
26 |
+
**Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)".
|
27 |
+
|
28 |
+
**Where to send comments** Instructions on how to provide feedback or comments on the model can be found in the model [README](README.md), or by opening an issue in the GitHub repository ([https://github.com/facebookresearch/codellama/](https://github.com/facebookresearch/codellama/)).
|
29 |
+
|
30 |
+
## **Intended Use**
|
31 |
+
**Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications.
|
32 |
+
|
33 |
+
**Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants.
|
34 |
+
|
35 |
+
## **Hardware and Software**
|
36 |
+
**Training Factors**
|
37 |
+
We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster.
|
38 |
+
|
39 |
+
**Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program.
|
40 |
+
|
41 |
+
**Training data**
|
42 |
+
All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details).
|
43 |
+
Code Llama - Instruct uses additional instruction fine-tuning data.
|
44 |
+
|
45 |
+
**Evaluation Results**
|
46 |
+
See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper.
|
47 |
+
|
48 |
+
## **Ethical Considerations and Limitations**
|
49 |
+
Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model.
|
50 |
+
|
51 |
+
Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-user-guide](https://ai.meta.com/llama/responsible-user-guide).
|
52 |
+
|
README.md
CHANGED
@@ -31,6 +31,13 @@ This is Transformers/HF format fp16 weights for CodeLlama 13B. It is the result
|
|
31 |
|
32 |
Quantisations will be coming shortly.
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
<!-- footer start -->
|
35 |
<!-- 200823 -->
|
36 |
## Discord
|
|
|
31 |
|
32 |
Quantisations will be coming shortly.
|
33 |
|
34 |
+
Please note that due to a change in the RoPE Theta value, for correct results you must load these FP16 models with `trust_remote_code=True`
|
35 |
+
|
36 |
+
Credit to @emozilla for creating the necessary modelling code to achieve this!
|
37 |
+
|
38 |
+
## Prompt template: TBC
|
39 |
+
|
40 |
+
|
41 |
<!-- footer start -->
|
42 |
<!-- 200823 -->
|
43 |
## Discord
|
config.json
CHANGED
@@ -1,24 +1,31 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"bos_token_id": 1,
|
6 |
+
"eos_token_id": 2,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 5120,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 13824,
|
11 |
+
"max_position_embeddings": 16384,
|
12 |
+
"model_type": "llama",
|
13 |
+
"num_attention_heads": 40,
|
14 |
+
"num_hidden_layers": 40,
|
15 |
+
"num_key_value_heads": 40,
|
16 |
+
"pretraining_tp": 1,
|
17 |
+
"rms_norm_eps": 1e-05,
|
18 |
+
"rope_scaling": null,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"torch_dtype": "float16",
|
21 |
+
"transformers_version": "4.32.0",
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 32016,
|
24 |
+
"auto_map": {
|
25 |
+
"AutoConfig": "configuration_llama.LlamaConfig",
|
26 |
+
"AutoModel": "modeling_llama.LlamaModel",
|
27 |
+
"AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM",
|
28 |
+
"AutoModelForSequenceClassification": "modeling_llama.LlamaForSequenceClassification"
|
29 |
+
},
|
30 |
+
"rope_theta": 1000000
|
31 |
+
}
|
configuration_llama.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" LLaMA model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
29 |
+
|
30 |
+
|
31 |
+
class LlamaConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
pretraining_tp (`int`, *optional*, defaults to `1`):
|
62 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
63 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
64 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
65 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
66 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
67 |
+
The non-linear activation function (function or string) in the decoder.
|
68 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
69 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
70 |
+
just in case (e.g., 512 or 1024 or 2048).
|
71 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
72 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
73 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
74 |
+
The epsilon used by the rms normalization layers.
|
75 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
76 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
77 |
+
relevant if `config.is_decoder=True`.
|
78 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether to tie weight embeddings
|
80 |
+
rope_scaling (`Dict`, *optional*):
|
81 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
82 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
83 |
+
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
84 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
85 |
+
these scaling strategies behave:
|
86 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
87 |
+
experimental feature, subject to breaking API changes in future versions.
|
88 |
+
|
89 |
+
Example:
|
90 |
+
|
91 |
+
```python
|
92 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
93 |
+
|
94 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
95 |
+
>>> configuration = LlamaConfig()
|
96 |
+
|
97 |
+
>>> # Initializing a model from the llama-7b style configuration
|
98 |
+
>>> model = LlamaModel(configuration)
|
99 |
+
|
100 |
+
>>> # Accessing the model configuration
|
101 |
+
>>> configuration = model.config
|
102 |
+
```"""
|
103 |
+
model_type = "llama"
|
104 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
105 |
+
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
vocab_size=32000,
|
109 |
+
hidden_size=4096,
|
110 |
+
intermediate_size=11008,
|
111 |
+
num_hidden_layers=32,
|
112 |
+
num_attention_heads=32,
|
113 |
+
num_key_value_heads=None,
|
114 |
+
hidden_act="silu",
|
115 |
+
max_position_embeddings=2048,
|
116 |
+
initializer_range=0.02,
|
117 |
+
rms_norm_eps=1e-6,
|
118 |
+
use_cache=True,
|
119 |
+
pad_token_id=None,
|
120 |
+
bos_token_id=1,
|
121 |
+
eos_token_id=2,
|
122 |
+
pretraining_tp=1,
|
123 |
+
tie_word_embeddings=False,
|
124 |
+
rope_scaling=None,
|
125 |
+
rope_theta=10000,
|
126 |
+
**kwargs,
|
127 |
+
):
|
128 |
+
self.vocab_size = vocab_size
|
129 |
+
self.max_position_embeddings = max_position_embeddings
|
130 |
+
self.hidden_size = hidden_size
|
131 |
+
self.intermediate_size = intermediate_size
|
132 |
+
self.num_hidden_layers = num_hidden_layers
|
133 |
+
self.num_attention_heads = num_attention_heads
|
134 |
+
|
135 |
+
# for backward compatibility
|
136 |
+
if num_key_value_heads is None:
|
137 |
+
num_key_value_heads = num_attention_heads
|
138 |
+
|
139 |
+
self.num_key_value_heads = num_key_value_heads
|
140 |
+
self.hidden_act = hidden_act
|
141 |
+
self.initializer_range = initializer_range
|
142 |
+
self.rms_norm_eps = rms_norm_eps
|
143 |
+
self.pretraining_tp = pretraining_tp
|
144 |
+
self.use_cache = use_cache
|
145 |
+
self.rope_scaling = rope_scaling
|
146 |
+
self._rope_scaling_validation()
|
147 |
+
self.rope_theta = rope_theta
|
148 |
+
|
149 |
+
super().__init__(
|
150 |
+
pad_token_id=pad_token_id,
|
151 |
+
bos_token_id=bos_token_id,
|
152 |
+
eos_token_id=eos_token_id,
|
153 |
+
tie_word_embeddings=tie_word_embeddings,
|
154 |
+
**kwargs,
|
155 |
+
)
|
156 |
+
|
157 |
+
def _rope_scaling_validation(self):
|
158 |
+
"""
|
159 |
+
Validate the `rope_scaling` configuration.
|
160 |
+
"""
|
161 |
+
if self.rope_scaling is None:
|
162 |
+
return
|
163 |
+
|
164 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
165 |
+
raise ValueError(
|
166 |
+
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
|
167 |
+
f"got {self.rope_scaling}"
|
168 |
+
)
|
169 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
170 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
171 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
172 |
+
raise ValueError(
|
173 |
+
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
174 |
+
)
|
175 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
176 |
+
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|
modeling_llama.py
ADDED
@@ -0,0 +1,1020 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch LLaMA model."""
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
32 |
+
from transformers.modeling_utils import PreTrainedModel
|
33 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
34 |
+
from .configuration_llama import LlamaConfig
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
40 |
+
|
41 |
+
|
42 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
43 |
+
def _make_causal_mask(
|
44 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
45 |
+
):
|
46 |
+
"""
|
47 |
+
Make causal mask used for bi-directional self-attention.
|
48 |
+
"""
|
49 |
+
bsz, tgt_len = input_ids_shape
|
50 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
51 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
52 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
53 |
+
mask = mask.to(dtype)
|
54 |
+
|
55 |
+
if past_key_values_length > 0:
|
56 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
57 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
58 |
+
|
59 |
+
|
60 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
61 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
62 |
+
"""
|
63 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
64 |
+
"""
|
65 |
+
bsz, src_len = mask.size()
|
66 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
67 |
+
|
68 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
69 |
+
|
70 |
+
inverted_mask = 1.0 - expanded_mask
|
71 |
+
|
72 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
73 |
+
|
74 |
+
|
75 |
+
class LlamaRMSNorm(nn.Module):
|
76 |
+
def __init__(self, hidden_size, eps=1e-6):
|
77 |
+
"""
|
78 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
79 |
+
"""
|
80 |
+
super().__init__()
|
81 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
82 |
+
self.variance_epsilon = eps
|
83 |
+
|
84 |
+
def forward(self, hidden_states):
|
85 |
+
input_dtype = hidden_states.dtype
|
86 |
+
hidden_states = hidden_states.to(torch.float32)
|
87 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
88 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
89 |
+
return self.weight * hidden_states.to(input_dtype)
|
90 |
+
|
91 |
+
|
92 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
93 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
94 |
+
super().__init__()
|
95 |
+
|
96 |
+
self.dim = dim
|
97 |
+
self.max_position_embeddings = max_position_embeddings
|
98 |
+
self.base = base
|
99 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
100 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
101 |
+
|
102 |
+
# Build here to make `torch.jit.trace` work.
|
103 |
+
self._set_cos_sin_cache(
|
104 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
105 |
+
)
|
106 |
+
|
107 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
108 |
+
self.max_seq_len_cached = seq_len
|
109 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
110 |
+
|
111 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
112 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
113 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
114 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
115 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
116 |
+
|
117 |
+
def forward(self, x, seq_len=None):
|
118 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
119 |
+
if seq_len > self.max_seq_len_cached:
|
120 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
121 |
+
|
122 |
+
return (
|
123 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
124 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
125 |
+
)
|
126 |
+
|
127 |
+
|
128 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
129 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
130 |
+
|
131 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
132 |
+
self.scaling_factor = scaling_factor
|
133 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
134 |
+
|
135 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
136 |
+
self.max_seq_len_cached = seq_len
|
137 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
138 |
+
t = t / self.scaling_factor
|
139 |
+
|
140 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
141 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
142 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
143 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
144 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
145 |
+
|
146 |
+
|
147 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
148 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
149 |
+
|
150 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
151 |
+
self.scaling_factor = scaling_factor
|
152 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
153 |
+
|
154 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
155 |
+
self.max_seq_len_cached = seq_len
|
156 |
+
|
157 |
+
if seq_len > self.max_position_embeddings:
|
158 |
+
base = self.base * (
|
159 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
160 |
+
) ** (self.dim / (self.dim - 2))
|
161 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
162 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
163 |
+
|
164 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
165 |
+
|
166 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
167 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
168 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
169 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
170 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
171 |
+
|
172 |
+
|
173 |
+
def rotate_half(x):
|
174 |
+
"""Rotates half the hidden dims of the input."""
|
175 |
+
x1 = x[..., : x.shape[-1] // 2]
|
176 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
177 |
+
return torch.cat((-x2, x1), dim=-1)
|
178 |
+
|
179 |
+
|
180 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
181 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
182 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
183 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
184 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
185 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
186 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
187 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
188 |
+
return q_embed, k_embed
|
189 |
+
|
190 |
+
|
191 |
+
class LlamaMLP(nn.Module):
|
192 |
+
def __init__(self, config):
|
193 |
+
super().__init__()
|
194 |
+
self.config = config
|
195 |
+
self.hidden_size = config.hidden_size
|
196 |
+
self.intermediate_size = config.intermediate_size
|
197 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
198 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
199 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
200 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
if self.config.pretraining_tp > 1:
|
204 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
205 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
206 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
207 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
208 |
+
|
209 |
+
gate_proj = torch.cat(
|
210 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
211 |
+
)
|
212 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
213 |
+
|
214 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
215 |
+
down_proj = [
|
216 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
217 |
+
]
|
218 |
+
down_proj = sum(down_proj)
|
219 |
+
else:
|
220 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
221 |
+
|
222 |
+
return down_proj
|
223 |
+
|
224 |
+
|
225 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
226 |
+
"""
|
227 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
228 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
229 |
+
"""
|
230 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
231 |
+
if n_rep == 1:
|
232 |
+
return hidden_states
|
233 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
234 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
235 |
+
|
236 |
+
|
237 |
+
class LlamaAttention(nn.Module):
|
238 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
239 |
+
|
240 |
+
def __init__(self, config: LlamaConfig):
|
241 |
+
super().__init__()
|
242 |
+
self.config = config
|
243 |
+
self.hidden_size = config.hidden_size
|
244 |
+
self.num_heads = config.num_attention_heads
|
245 |
+
self.head_dim = self.hidden_size // self.num_heads
|
246 |
+
self.num_key_value_heads = config.num_key_value_heads
|
247 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
248 |
+
self.max_position_embeddings = config.max_position_embeddings
|
249 |
+
self.rope_theta = config.rope_theta
|
250 |
+
|
251 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
252 |
+
raise ValueError(
|
253 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
254 |
+
f" and `num_heads`: {self.num_heads})."
|
255 |
+
)
|
256 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
257 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
258 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
259 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
260 |
+
self._init_rope()
|
261 |
+
|
262 |
+
def _init_rope(self):
|
263 |
+
if self.config.rope_scaling is None:
|
264 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
265 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings,
|
266 |
+
base=self.rope_theta
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
scaling_type = self.config.rope_scaling["type"]
|
270 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
271 |
+
if scaling_type == "linear":
|
272 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
273 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings,
|
274 |
+
base=self.rope_theta, scaling_factor=scaling_factor
|
275 |
+
)
|
276 |
+
elif scaling_type == "dynamic":
|
277 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
278 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings,
|
279 |
+
base=self.rope_theta, scaling_factor=scaling_factor
|
280 |
+
)
|
281 |
+
else:
|
282 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
283 |
+
|
284 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
285 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
286 |
+
|
287 |
+
def forward(
|
288 |
+
self,
|
289 |
+
hidden_states: torch.Tensor,
|
290 |
+
attention_mask: Optional[torch.Tensor] = None,
|
291 |
+
position_ids: Optional[torch.LongTensor] = None,
|
292 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
293 |
+
output_attentions: bool = False,
|
294 |
+
use_cache: bool = False,
|
295 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
296 |
+
bsz, q_len, _ = hidden_states.size()
|
297 |
+
|
298 |
+
if self.config.pretraining_tp > 1:
|
299 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
300 |
+
query_slices = self.q_proj.weight.split(
|
301 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
302 |
+
)
|
303 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
304 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
305 |
+
|
306 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
307 |
+
query_states = torch.cat(query_states, dim=-1)
|
308 |
+
|
309 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
310 |
+
key_states = torch.cat(key_states, dim=-1)
|
311 |
+
|
312 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
313 |
+
value_states = torch.cat(value_states, dim=-1)
|
314 |
+
|
315 |
+
else:
|
316 |
+
query_states = self.q_proj(hidden_states)
|
317 |
+
key_states = self.k_proj(hidden_states)
|
318 |
+
value_states = self.v_proj(hidden_states)
|
319 |
+
|
320 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
321 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
322 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
323 |
+
|
324 |
+
kv_seq_len = key_states.shape[-2]
|
325 |
+
if past_key_value is not None:
|
326 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
327 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
328 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
329 |
+
|
330 |
+
if past_key_value is not None:
|
331 |
+
# reuse k, v, self_attention
|
332 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
333 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
334 |
+
|
335 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
336 |
+
|
337 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
338 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
339 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
340 |
+
|
341 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
342 |
+
|
343 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
344 |
+
raise ValueError(
|
345 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
346 |
+
f" {attn_weights.size()}"
|
347 |
+
)
|
348 |
+
|
349 |
+
if attention_mask is not None:
|
350 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
351 |
+
raise ValueError(
|
352 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
353 |
+
)
|
354 |
+
attn_weights = attn_weights + attention_mask
|
355 |
+
|
356 |
+
# upcast attention to fp32
|
357 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
358 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
359 |
+
|
360 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
361 |
+
raise ValueError(
|
362 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
363 |
+
f" {attn_output.size()}"
|
364 |
+
)
|
365 |
+
|
366 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
367 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
368 |
+
|
369 |
+
if self.config.pretraining_tp > 1:
|
370 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
371 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
372 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
373 |
+
else:
|
374 |
+
attn_output = self.o_proj(attn_output)
|
375 |
+
|
376 |
+
if not output_attentions:
|
377 |
+
attn_weights = None
|
378 |
+
|
379 |
+
return attn_output, attn_weights, past_key_value
|
380 |
+
|
381 |
+
|
382 |
+
class LlamaDecoderLayer(nn.Module):
|
383 |
+
def __init__(self, config: LlamaConfig):
|
384 |
+
super().__init__()
|
385 |
+
self.hidden_size = config.hidden_size
|
386 |
+
self.self_attn = LlamaAttention(config=config)
|
387 |
+
self.mlp = LlamaMLP(config)
|
388 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
389 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
390 |
+
|
391 |
+
def forward(
|
392 |
+
self,
|
393 |
+
hidden_states: torch.Tensor,
|
394 |
+
attention_mask: Optional[torch.Tensor] = None,
|
395 |
+
position_ids: Optional[torch.LongTensor] = None,
|
396 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
397 |
+
output_attentions: Optional[bool] = False,
|
398 |
+
use_cache: Optional[bool] = False,
|
399 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
400 |
+
"""
|
401 |
+
Args:
|
402 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
403 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
404 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
405 |
+
output_attentions (`bool`, *optional*):
|
406 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
407 |
+
returned tensors for more detail.
|
408 |
+
use_cache (`bool`, *optional*):
|
409 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
410 |
+
(see `past_key_values`).
|
411 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
412 |
+
"""
|
413 |
+
|
414 |
+
residual = hidden_states
|
415 |
+
|
416 |
+
hidden_states = self.input_layernorm(hidden_states)
|
417 |
+
|
418 |
+
# Self Attention
|
419 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
420 |
+
hidden_states=hidden_states,
|
421 |
+
attention_mask=attention_mask,
|
422 |
+
position_ids=position_ids,
|
423 |
+
past_key_value=past_key_value,
|
424 |
+
output_attentions=output_attentions,
|
425 |
+
use_cache=use_cache,
|
426 |
+
)
|
427 |
+
hidden_states = residual + hidden_states
|
428 |
+
|
429 |
+
# Fully Connected
|
430 |
+
residual = hidden_states
|
431 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
432 |
+
hidden_states = self.mlp(hidden_states)
|
433 |
+
hidden_states = residual + hidden_states
|
434 |
+
|
435 |
+
outputs = (hidden_states,)
|
436 |
+
|
437 |
+
if output_attentions:
|
438 |
+
outputs += (self_attn_weights,)
|
439 |
+
|
440 |
+
if use_cache:
|
441 |
+
outputs += (present_key_value,)
|
442 |
+
|
443 |
+
return outputs
|
444 |
+
|
445 |
+
|
446 |
+
LLAMA_START_DOCSTRING = r"""
|
447 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
448 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
449 |
+
etc.)
|
450 |
+
|
451 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
452 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
453 |
+
and behavior.
|
454 |
+
|
455 |
+
Parameters:
|
456 |
+
config ([`LlamaConfig`]):
|
457 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
458 |
+
load the weights associated with the model, only the configuration. Check out the
|
459 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
460 |
+
"""
|
461 |
+
|
462 |
+
|
463 |
+
@add_start_docstrings(
|
464 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
465 |
+
LLAMA_START_DOCSTRING,
|
466 |
+
)
|
467 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
468 |
+
config_class = LlamaConfig
|
469 |
+
base_model_prefix = "model"
|
470 |
+
supports_gradient_checkpointing = True
|
471 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
472 |
+
_skip_keys_device_placement = "past_key_values"
|
473 |
+
|
474 |
+
def _init_weights(self, module):
|
475 |
+
std = self.config.initializer_range
|
476 |
+
if isinstance(module, nn.Linear):
|
477 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
478 |
+
if module.bias is not None:
|
479 |
+
module.bias.data.zero_()
|
480 |
+
elif isinstance(module, nn.Embedding):
|
481 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
482 |
+
if module.padding_idx is not None:
|
483 |
+
module.weight.data[module.padding_idx].zero_()
|
484 |
+
|
485 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
486 |
+
if isinstance(module, LlamaModel):
|
487 |
+
module.gradient_checkpointing = value
|
488 |
+
|
489 |
+
|
490 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
491 |
+
Args:
|
492 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
493 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
494 |
+
it.
|
495 |
+
|
496 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
497 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
498 |
+
|
499 |
+
[What are input IDs?](../glossary#input-ids)
|
500 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
501 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
502 |
+
|
503 |
+
- 1 for tokens that are **not masked**,
|
504 |
+
- 0 for tokens that are **masked**.
|
505 |
+
|
506 |
+
[What are attention masks?](../glossary#attention-mask)
|
507 |
+
|
508 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
509 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
510 |
+
|
511 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
512 |
+
`past_key_values`).
|
513 |
+
|
514 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
515 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
516 |
+
information on the default strategy.
|
517 |
+
|
518 |
+
- 1 indicates the head is **not masked**,
|
519 |
+
- 0 indicates the head is **masked**.
|
520 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
521 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
522 |
+
config.n_positions - 1]`.
|
523 |
+
|
524 |
+
[What are position IDs?](../glossary#position-ids)
|
525 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
526 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
527 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
528 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
529 |
+
|
530 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
531 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
532 |
+
|
533 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
534 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
535 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
536 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
537 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
538 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
539 |
+
model's internal embedding lookup matrix.
|
540 |
+
use_cache (`bool`, *optional*):
|
541 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
542 |
+
`past_key_values`).
|
543 |
+
output_attentions (`bool`, *optional*):
|
544 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
545 |
+
tensors for more detail.
|
546 |
+
output_hidden_states (`bool`, *optional*):
|
547 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
548 |
+
more detail.
|
549 |
+
return_dict (`bool`, *optional*):
|
550 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
551 |
+
"""
|
552 |
+
|
553 |
+
|
554 |
+
@add_start_docstrings(
|
555 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
556 |
+
LLAMA_START_DOCSTRING,
|
557 |
+
)
|
558 |
+
class LlamaModel(LlamaPreTrainedModel):
|
559 |
+
"""
|
560 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
561 |
+
|
562 |
+
Args:
|
563 |
+
config: LlamaConfig
|
564 |
+
"""
|
565 |
+
|
566 |
+
def __init__(self, config: LlamaConfig):
|
567 |
+
super().__init__(config)
|
568 |
+
self.padding_idx = config.pad_token_id
|
569 |
+
self.vocab_size = config.vocab_size
|
570 |
+
|
571 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
572 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
573 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
574 |
+
|
575 |
+
self.gradient_checkpointing = False
|
576 |
+
# Initialize weights and apply final processing
|
577 |
+
self.post_init()
|
578 |
+
|
579 |
+
def get_input_embeddings(self):
|
580 |
+
return self.embed_tokens
|
581 |
+
|
582 |
+
def set_input_embeddings(self, value):
|
583 |
+
self.embed_tokens = value
|
584 |
+
|
585 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
586 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
587 |
+
# create causal mask
|
588 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
589 |
+
combined_attention_mask = None
|
590 |
+
if input_shape[-1] > 1:
|
591 |
+
combined_attention_mask = _make_causal_mask(
|
592 |
+
input_shape,
|
593 |
+
inputs_embeds.dtype,
|
594 |
+
device=inputs_embeds.device,
|
595 |
+
past_key_values_length=past_key_values_length,
|
596 |
+
)
|
597 |
+
|
598 |
+
if attention_mask is not None:
|
599 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
600 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
601 |
+
inputs_embeds.device
|
602 |
+
)
|
603 |
+
combined_attention_mask = (
|
604 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
605 |
+
)
|
606 |
+
|
607 |
+
return combined_attention_mask
|
608 |
+
|
609 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
610 |
+
def forward(
|
611 |
+
self,
|
612 |
+
input_ids: torch.LongTensor = None,
|
613 |
+
attention_mask: Optional[torch.Tensor] = None,
|
614 |
+
position_ids: Optional[torch.LongTensor] = None,
|
615 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
616 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
617 |
+
use_cache: Optional[bool] = None,
|
618 |
+
output_attentions: Optional[bool] = None,
|
619 |
+
output_hidden_states: Optional[bool] = None,
|
620 |
+
return_dict: Optional[bool] = None,
|
621 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
622 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
623 |
+
output_hidden_states = (
|
624 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
625 |
+
)
|
626 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
627 |
+
|
628 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
629 |
+
|
630 |
+
# retrieve input_ids and inputs_embeds
|
631 |
+
if input_ids is not None and inputs_embeds is not None:
|
632 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
633 |
+
elif input_ids is not None:
|
634 |
+
batch_size, seq_length = input_ids.shape
|
635 |
+
elif inputs_embeds is not None:
|
636 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
637 |
+
else:
|
638 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
639 |
+
|
640 |
+
seq_length_with_past = seq_length
|
641 |
+
past_key_values_length = 0
|
642 |
+
|
643 |
+
if past_key_values is not None:
|
644 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
645 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
646 |
+
|
647 |
+
if position_ids is None:
|
648 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
649 |
+
position_ids = torch.arange(
|
650 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
651 |
+
)
|
652 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
653 |
+
else:
|
654 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
655 |
+
|
656 |
+
if inputs_embeds is None:
|
657 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
658 |
+
# embed positions
|
659 |
+
if attention_mask is None:
|
660 |
+
attention_mask = torch.ones(
|
661 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
662 |
+
)
|
663 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
664 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
665 |
+
)
|
666 |
+
|
667 |
+
hidden_states = inputs_embeds
|
668 |
+
|
669 |
+
if self.gradient_checkpointing and self.training:
|
670 |
+
if use_cache:
|
671 |
+
logger.warning_once(
|
672 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
673 |
+
)
|
674 |
+
use_cache = False
|
675 |
+
|
676 |
+
# decoder layers
|
677 |
+
all_hidden_states = () if output_hidden_states else None
|
678 |
+
all_self_attns = () if output_attentions else None
|
679 |
+
next_decoder_cache = () if use_cache else None
|
680 |
+
|
681 |
+
for idx, decoder_layer in enumerate(self.layers):
|
682 |
+
if output_hidden_states:
|
683 |
+
all_hidden_states += (hidden_states,)
|
684 |
+
|
685 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
686 |
+
|
687 |
+
if self.gradient_checkpointing and self.training:
|
688 |
+
|
689 |
+
def create_custom_forward(module):
|
690 |
+
def custom_forward(*inputs):
|
691 |
+
# None for past_key_value
|
692 |
+
return module(*inputs, past_key_value, output_attentions)
|
693 |
+
|
694 |
+
return custom_forward
|
695 |
+
|
696 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
697 |
+
create_custom_forward(decoder_layer),
|
698 |
+
hidden_states,
|
699 |
+
attention_mask,
|
700 |
+
position_ids,
|
701 |
+
)
|
702 |
+
else:
|
703 |
+
layer_outputs = decoder_layer(
|
704 |
+
hidden_states,
|
705 |
+
attention_mask=attention_mask,
|
706 |
+
position_ids=position_ids,
|
707 |
+
past_key_value=past_key_value,
|
708 |
+
output_attentions=output_attentions,
|
709 |
+
use_cache=use_cache,
|
710 |
+
)
|
711 |
+
|
712 |
+
hidden_states = layer_outputs[0]
|
713 |
+
|
714 |
+
if use_cache:
|
715 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
716 |
+
|
717 |
+
if output_attentions:
|
718 |
+
all_self_attns += (layer_outputs[1],)
|
719 |
+
|
720 |
+
hidden_states = self.norm(hidden_states)
|
721 |
+
|
722 |
+
# add hidden states from the last decoder layer
|
723 |
+
if output_hidden_states:
|
724 |
+
all_hidden_states += (hidden_states,)
|
725 |
+
|
726 |
+
next_cache = next_decoder_cache if use_cache else None
|
727 |
+
if not return_dict:
|
728 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
729 |
+
return BaseModelOutputWithPast(
|
730 |
+
last_hidden_state=hidden_states,
|
731 |
+
past_key_values=next_cache,
|
732 |
+
hidden_states=all_hidden_states,
|
733 |
+
attentions=all_self_attns,
|
734 |
+
)
|
735 |
+
|
736 |
+
|
737 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
738 |
+
_tied_weights_keys = ["lm_head.weight"]
|
739 |
+
|
740 |
+
def __init__(self, config):
|
741 |
+
super().__init__(config)
|
742 |
+
self.model = LlamaModel(config)
|
743 |
+
self.vocab_size = config.vocab_size
|
744 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
745 |
+
|
746 |
+
# Initialize weights and apply final processing
|
747 |
+
self.post_init()
|
748 |
+
|
749 |
+
def get_input_embeddings(self):
|
750 |
+
return self.model.embed_tokens
|
751 |
+
|
752 |
+
def set_input_embeddings(self, value):
|
753 |
+
self.model.embed_tokens = value
|
754 |
+
|
755 |
+
def get_output_embeddings(self):
|
756 |
+
return self.lm_head
|
757 |
+
|
758 |
+
def set_output_embeddings(self, new_embeddings):
|
759 |
+
self.lm_head = new_embeddings
|
760 |
+
|
761 |
+
def set_decoder(self, decoder):
|
762 |
+
self.model = decoder
|
763 |
+
|
764 |
+
def get_decoder(self):
|
765 |
+
return self.model
|
766 |
+
|
767 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
768 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
769 |
+
def forward(
|
770 |
+
self,
|
771 |
+
input_ids: torch.LongTensor = None,
|
772 |
+
attention_mask: Optional[torch.Tensor] = None,
|
773 |
+
position_ids: Optional[torch.LongTensor] = None,
|
774 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
775 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
776 |
+
labels: Optional[torch.LongTensor] = None,
|
777 |
+
use_cache: Optional[bool] = None,
|
778 |
+
output_attentions: Optional[bool] = None,
|
779 |
+
output_hidden_states: Optional[bool] = None,
|
780 |
+
return_dict: Optional[bool] = None,
|
781 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
782 |
+
r"""
|
783 |
+
Args:
|
784 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
785 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
786 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
787 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
788 |
+
|
789 |
+
Returns:
|
790 |
+
|
791 |
+
Example:
|
792 |
+
|
793 |
+
```python
|
794 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
795 |
+
|
796 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
797 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
798 |
+
|
799 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
800 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
801 |
+
|
802 |
+
>>> # Generate
|
803 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
804 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
805 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
806 |
+
```"""
|
807 |
+
|
808 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
809 |
+
output_hidden_states = (
|
810 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
811 |
+
)
|
812 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
813 |
+
|
814 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
815 |
+
outputs = self.model(
|
816 |
+
input_ids=input_ids,
|
817 |
+
attention_mask=attention_mask,
|
818 |
+
position_ids=position_ids,
|
819 |
+
past_key_values=past_key_values,
|
820 |
+
inputs_embeds=inputs_embeds,
|
821 |
+
use_cache=use_cache,
|
822 |
+
output_attentions=output_attentions,
|
823 |
+
output_hidden_states=output_hidden_states,
|
824 |
+
return_dict=return_dict,
|
825 |
+
)
|
826 |
+
|
827 |
+
hidden_states = outputs[0]
|
828 |
+
if self.config.pretraining_tp > 1:
|
829 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
830 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
831 |
+
logits = torch.cat(logits, dim=-1)
|
832 |
+
else:
|
833 |
+
logits = self.lm_head(hidden_states)
|
834 |
+
logits = logits.float()
|
835 |
+
|
836 |
+
loss = None
|
837 |
+
if labels is not None:
|
838 |
+
# Shift so that tokens < n predict n
|
839 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
840 |
+
shift_labels = labels[..., 1:].contiguous()
|
841 |
+
# Flatten the tokens
|
842 |
+
loss_fct = CrossEntropyLoss()
|
843 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
844 |
+
shift_labels = shift_labels.view(-1)
|
845 |
+
# Enable model parallelism
|
846 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
847 |
+
loss = loss_fct(shift_logits, shift_labels)
|
848 |
+
|
849 |
+
if not return_dict:
|
850 |
+
output = (logits,) + outputs[1:]
|
851 |
+
return (loss,) + output if loss is not None else output
|
852 |
+
|
853 |
+
return CausalLMOutputWithPast(
|
854 |
+
loss=loss,
|
855 |
+
logits=logits,
|
856 |
+
past_key_values=outputs.past_key_values,
|
857 |
+
hidden_states=outputs.hidden_states,
|
858 |
+
attentions=outputs.attentions,
|
859 |
+
)
|
860 |
+
|
861 |
+
def prepare_inputs_for_generation(
|
862 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
863 |
+
):
|
864 |
+
if past_key_values:
|
865 |
+
input_ids = input_ids[:, -1:]
|
866 |
+
|
867 |
+
position_ids = kwargs.get("position_ids", None)
|
868 |
+
if attention_mask is not None and position_ids is None:
|
869 |
+
# create position_ids on the fly for batch generation
|
870 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
871 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
872 |
+
if past_key_values:
|
873 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
874 |
+
|
875 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
876 |
+
if inputs_embeds is not None and past_key_values is None:
|
877 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
878 |
+
else:
|
879 |
+
model_inputs = {"input_ids": input_ids}
|
880 |
+
|
881 |
+
model_inputs.update(
|
882 |
+
{
|
883 |
+
"position_ids": position_ids,
|
884 |
+
"past_key_values": past_key_values,
|
885 |
+
"use_cache": kwargs.get("use_cache"),
|
886 |
+
"attention_mask": attention_mask,
|
887 |
+
}
|
888 |
+
)
|
889 |
+
return model_inputs
|
890 |
+
|
891 |
+
@staticmethod
|
892 |
+
def _reorder_cache(past_key_values, beam_idx):
|
893 |
+
reordered_past = ()
|
894 |
+
for layer_past in past_key_values:
|
895 |
+
reordered_past += (
|
896 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
897 |
+
)
|
898 |
+
return reordered_past
|
899 |
+
|
900 |
+
|
901 |
+
@add_start_docstrings(
|
902 |
+
"""
|
903 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
904 |
+
|
905 |
+
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
906 |
+
(e.g. GPT-2) do.
|
907 |
+
|
908 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
909 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
910 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
911 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
912 |
+
each row of the batch).
|
913 |
+
""",
|
914 |
+
LLAMA_START_DOCSTRING,
|
915 |
+
)
|
916 |
+
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
917 |
+
def __init__(self, config):
|
918 |
+
super().__init__(config)
|
919 |
+
self.num_labels = config.num_labels
|
920 |
+
self.model = LlamaModel(config)
|
921 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
922 |
+
|
923 |
+
# Initialize weights and apply final processing
|
924 |
+
self.post_init()
|
925 |
+
|
926 |
+
def get_input_embeddings(self):
|
927 |
+
return self.model.embed_tokens
|
928 |
+
|
929 |
+
def set_input_embeddings(self, value):
|
930 |
+
self.model.embed_tokens = value
|
931 |
+
|
932 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
933 |
+
def forward(
|
934 |
+
self,
|
935 |
+
input_ids: torch.LongTensor = None,
|
936 |
+
attention_mask: Optional[torch.Tensor] = None,
|
937 |
+
position_ids: Optional[torch.LongTensor] = None,
|
938 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
939 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
940 |
+
labels: Optional[torch.LongTensor] = None,
|
941 |
+
use_cache: Optional[bool] = None,
|
942 |
+
output_attentions: Optional[bool] = None,
|
943 |
+
output_hidden_states: Optional[bool] = None,
|
944 |
+
return_dict: Optional[bool] = None,
|
945 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
946 |
+
r"""
|
947 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
948 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
949 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
950 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
951 |
+
"""
|
952 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
953 |
+
|
954 |
+
transformer_outputs = self.model(
|
955 |
+
input_ids,
|
956 |
+
attention_mask=attention_mask,
|
957 |
+
position_ids=position_ids,
|
958 |
+
past_key_values=past_key_values,
|
959 |
+
inputs_embeds=inputs_embeds,
|
960 |
+
use_cache=use_cache,
|
961 |
+
output_attentions=output_attentions,
|
962 |
+
output_hidden_states=output_hidden_states,
|
963 |
+
return_dict=return_dict,
|
964 |
+
)
|
965 |
+
hidden_states = transformer_outputs[0]
|
966 |
+
logits = self.score(hidden_states)
|
967 |
+
|
968 |
+
if input_ids is not None:
|
969 |
+
batch_size = input_ids.shape[0]
|
970 |
+
else:
|
971 |
+
batch_size = inputs_embeds.shape[0]
|
972 |
+
|
973 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
974 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
975 |
+
if self.config.pad_token_id is None:
|
976 |
+
sequence_lengths = -1
|
977 |
+
else:
|
978 |
+
if input_ids is not None:
|
979 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
|
980 |
+
logits.device
|
981 |
+
)
|
982 |
+
else:
|
983 |
+
sequence_lengths = -1
|
984 |
+
|
985 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
986 |
+
|
987 |
+
loss = None
|
988 |
+
if labels is not None:
|
989 |
+
labels = labels.to(logits.device)
|
990 |
+
if self.config.problem_type is None:
|
991 |
+
if self.num_labels == 1:
|
992 |
+
self.config.problem_type = "regression"
|
993 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
994 |
+
self.config.problem_type = "single_label_classification"
|
995 |
+
else:
|
996 |
+
self.config.problem_type = "multi_label_classification"
|
997 |
+
|
998 |
+
if self.config.problem_type == "regression":
|
999 |
+
loss_fct = MSELoss()
|
1000 |
+
if self.num_labels == 1:
|
1001 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1002 |
+
else:
|
1003 |
+
loss = loss_fct(pooled_logits, labels)
|
1004 |
+
elif self.config.problem_type == "single_label_classification":
|
1005 |
+
loss_fct = CrossEntropyLoss()
|
1006 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1007 |
+
elif self.config.problem_type == "multi_label_classification":
|
1008 |
+
loss_fct = BCEWithLogitsLoss()
|
1009 |
+
loss = loss_fct(pooled_logits, labels)
|
1010 |
+
if not return_dict:
|
1011 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1012 |
+
return ((loss,) + output) if loss is not None else output
|
1013 |
+
|
1014 |
+
return SequenceClassifierOutputWithPast(
|
1015 |
+
loss=loss,
|
1016 |
+
logits=pooled_logits,
|
1017 |
+
past_key_values=transformer_outputs.past_key_values,
|
1018 |
+
hidden_states=transformer_outputs.hidden_states,
|
1019 |
+
attentions=transformer_outputs.attentions,
|
1020 |
+
)
|