Upload README.md
Browse files
README.md
CHANGED
@@ -156,7 +156,7 @@ The following clients/libraries will automatically download models for you, prov
|
|
156 |
|
157 |
### In `text-generation-webui`
|
158 |
|
159 |
-
Under Download Model, you can enter the model repo: TheBloke/13B-BlueMethod-GGUF and below it, a specific filename to download, such as: 13b-bluemethod.
|
160 |
|
161 |
Then click Download.
|
162 |
|
@@ -171,7 +171,7 @@ pip3 install huggingface-hub>=0.17.1
|
|
171 |
Then you can download any individual model file to the current directory, at high speed, with a command like this:
|
172 |
|
173 |
```shell
|
174 |
-
huggingface-cli download TheBloke/13B-BlueMethod-GGUF 13b-bluemethod.
|
175 |
```
|
176 |
|
177 |
<details>
|
@@ -194,7 +194,7 @@ pip3 install hf_transfer
|
|
194 |
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
|
195 |
|
196 |
```shell
|
197 |
-
HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/13B-BlueMethod-GGUF 13b-bluemethod.
|
198 |
```
|
199 |
|
200 |
Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
|
@@ -207,7 +207,7 @@ Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running
|
|
207 |
Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
|
208 |
|
209 |
```shell
|
210 |
-
./main -ngl 32 -m 13b-bluemethod.
|
211 |
```
|
212 |
|
213 |
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
|
@@ -247,7 +247,7 @@ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
|
|
247 |
from ctransformers import AutoModelForCausalLM
|
248 |
|
249 |
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
|
250 |
-
llm = AutoModelForCausalLM.from_pretrained("TheBloke/13B-BlueMethod-GGUF", model_file="13b-bluemethod.
|
251 |
|
252 |
print(llm("AI is going to"))
|
253 |
```
|
|
|
156 |
|
157 |
### In `text-generation-webui`
|
158 |
|
159 |
+
Under Download Model, you can enter the model repo: TheBloke/13B-BlueMethod-GGUF and below it, a specific filename to download, such as: 13b-bluemethod.Q4_K_M.gguf.
|
160 |
|
161 |
Then click Download.
|
162 |
|
|
|
171 |
Then you can download any individual model file to the current directory, at high speed, with a command like this:
|
172 |
|
173 |
```shell
|
174 |
+
huggingface-cli download TheBloke/13B-BlueMethod-GGUF 13b-bluemethod.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
|
175 |
```
|
176 |
|
177 |
<details>
|
|
|
194 |
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
|
195 |
|
196 |
```shell
|
197 |
+
HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/13B-BlueMethod-GGUF 13b-bluemethod.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
|
198 |
```
|
199 |
|
200 |
Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
|
|
|
207 |
Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
|
208 |
|
209 |
```shell
|
210 |
+
./main -ngl 32 -m 13b-bluemethod.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
|
211 |
```
|
212 |
|
213 |
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
|
|
|
247 |
from ctransformers import AutoModelForCausalLM
|
248 |
|
249 |
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
|
250 |
+
llm = AutoModelForCausalLM.from_pretrained("TheBloke/13B-BlueMethod-GGUF", model_file="13b-bluemethod.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
|
251 |
|
252 |
print(llm("AI is going to"))
|
253 |
```
|