--- license: apache-2.0 tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: wav2vec-fine_tuned-speech_command2 results: [] --- # wav2vec-fine_tuned-speech_command2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 0.1040 - Accuracy: 0.9735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3874 | 1.0 | 50 | 0.9633 | 0.9229 | | 0.5144 | 2.0 | 100 | 0.4398 | 0.9138 | | 0.3538 | 3.0 | 150 | 0.1688 | 0.9651 | | 0.2956 | 4.0 | 200 | 0.1622 | 0.9623 | | 0.2662 | 5.0 | 250 | 0.1425 | 0.9665 | | 0.2122 | 6.0 | 300 | 0.1301 | 0.9682 | | 0.1948 | 7.0 | 350 | 0.1232 | 0.9693 | | 0.1837 | 8.0 | 400 | 0.1116 | 0.9734 | | 0.1631 | 9.0 | 450 | 0.1041 | 0.9734 | | 0.1441 | 10.0 | 500 | 0.1040 | 0.9735 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3