--- license: apache-2.0 tags: - generated_from_trainer datasets: - AI-Lab-Makerere/beans metrics: - accuracy base_model: microsoft/beit-base-patch16-384 model-index: - name: beit_large512_fine_tuned results: - task: type: image-classification name: Image Classification dataset: name: beans type: beans config: train split: validation args: train metrics: - type: accuracy value: 0.9924812030075187 name: Accuracy --- # beit_large512_fine_tuned This model is a fine-tuned version of [microsoft/beit-base-patch16-384](https://huggingface.co./microsoft/beit-base-patch16-384) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0353 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.6571 | 0.98 | 16 | 0.3870 | 0.8722 | | 0.2299 | 1.97 | 32 | 0.0632 | 0.9850 | | 0.1435 | 2.95 | 48 | 0.0353 | 0.9925 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3