--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_keras_callback model-index: - name: Thamer/albert-fine-tuned results: [] --- # Thamer/albert-fine-tuned This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6843 - Train Binary Accuracy: 0.5640 - Validation Loss: 0.6990 - Validation Binary Accuracy: 0.5092 - Train Accuracy: 0.6032 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 3156, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Binary Accuracy | Validation Loss | Validation Binary Accuracy | Train Accuracy | Epoch | |:----------:|:---------------------:|:---------------:|:--------------------------:|:--------------:|:-----:| | 0.6987 | 0.5410 | 0.6446 | 0.6835 | 0.5333 | 0 | | 0.6976 | 0.5642 | 0.6981 | 0.5092 | 0.4908 | 1 | | 0.6843 | 0.5640 | 0.6990 | 0.5092 | 0.6032 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.11.0 - Datasets 2.13.1 - Tokenizers 0.13.3