File size: 2,742 Bytes
05997ee
 
 
 
 
 
 
 
 
 
 
 
 
04d0a5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9798624
 
04d0a5c
 
 
05997ee
 
 
 
 
 
 
808f9ac
05997ee
 
 
 
 
 
 
 
 
2b2bdf4
 
 
04d0a5c
05997ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b2bdf4
 
 
 
 
 
 
 
 
 
 
 
 
 
05997ee
 
 
 
 
 
9798624
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
library_name: transformers
license: apache-2.0
base_model: CAMeL-Lab/bert-base-arabic-camelbert-mix
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: camelbert-ner-arabic
  results: 
  - task: 
      name: Named Entity Recognition
      type: token-classification
    dataset:
      name: WikiAnn Arabic
      type: unimelb-nlp/wikiann
    metrics:
      - name: Precision
        type: precision
        value: 0.8884
      - name: Recall
        type: recall
        value: 0.8955
      - name: F1
        type: f1
        value: 0.8919
      - name: Accuracy
        type: accuracy
        value: 0.9513
datasets:
- unimelb-nlp/wikiann
language:
- ar
pipeline_tag: token-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# camelbert-ner-arabic

This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-mix](https://huggingface.co./CAMeL-Lab/bert-base-arabic-camelbert-mix) on [unimelb-nlp/wikiann](https://huggingface.co./datasets/unimelb-nlp/wikiann) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2111
- Precision: 0.8884
- Recall: 0.8955
- F1: 0.8919
- Accuracy: 0.9513

## Model description

- **Base Model:** CAMeL-Lab/bert-base-arabic-camelbert-mix
- **Task:** Named Entity Recognition (NER)
- **Language:** Arabic
- **Training Data:** WikiAnn dataset for Arabic


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1892        | 1.0   | 1250 | 0.2003          | 0.8653    | 0.8677 | 0.8665 | 0.9430   |
| 0.123         | 2.0   | 2500 | 0.1912          | 0.8802    | 0.8826 | 0.8814 | 0.9493   |
| 0.0809        | 3.0   | 3750 | 0.1942          | 0.8928    | 0.8969 | 0.8948 | 0.9539   |

## Usage

```python
from transformers import pipeline

# Load the NER pipeline
nlp = pipeline("ner", model="Tevfik-istanbullu/camelbert-ner-arabic")

# Example text
text = "ูŠุนู…ู„ ู…ุญู…ุฏ ููŠ ุดุฑูƒุฉ ุฌูˆุฌู„ ููŠ ุฏุจูŠ"
results = nlp(text)
print(results)

```

### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3