PyTorch
English
Tevatron
phi3_v
vidore
custom_code
MrLight commited on
Commit
2d0d575
1 Parent(s): cccaa5b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -10
README.md CHANGED
@@ -3,20 +3,22 @@ language:
3
  - en
4
  license: mit
5
  library_name: Tevatron
 
 
6
  datasets:
7
  - Tevatron/docmatix-ir
8
  - HuggingFaceM4/Docmatix
9
  - Tevatron/msmarco-passage-aug
10
  ---
11
 
12
- # DSE-Phi3-Docmatix-V1
13
 
14
- DSE-Phi3-Docmatix-V1 is a bi-encoder model designed to encode document screenshots into dense vectors for document retrieval. The Document Screenshot Embedding ([DSE](https://arxiv.org/abs/2406.11251)) approach captures documents in their original visual format, preserving all information such as text, images, and layout, thus avoiding tedious parsing and potential information loss.
15
 
16
- The model, `Tevatron/dse-phi3-docmatix-v1`, is trained using 1/10 of the `Tevatron/docmatix-ir` dataset, a variant of `HuggingFaceM4/Docmatix` specifically adapted for training PDF retrievers with Vision Language Models in open-domain question answering scenarios. For more information on dataset filtering and hard negative mining, refer to the [docmatix-ir](https://huggingface.co/datasets/Tevatron/docmatix-ir/blob/main/README.md) dataset page.
17
 
18
  DSE has strong zero-shot effectiveness for document retrieval both with visual input and text input.
19
- For example, DSE-Phi3-Docmatix-V1 achieves 74.1 nDCG@5 on [ViDoRE](https://huggingface.co/spaces/vidore/vidore-leaderboard) leaderboard in **zero-shot setting** (without finetuning with ViDoRe training data).
20
 
21
 
22
  ## How to Use the Model
@@ -27,8 +29,8 @@ For example, DSE-Phi3-Docmatix-V1 achieves 74.1 nDCG@5 on [ViDoRE](https://huggi
27
  import torch
28
  from transformers import AutoProcessor, AutoModelForCausalLM
29
 
30
- processor = AutoProcessor.from_pretrained('Tevatron/dse-phi3-docmatix-v1', trust_remote_code=True)
31
- model = AutoModelForCausalLM.from_pretrained('Tevatron/dse-phi3-docmatix-v1', trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, use_cache=False).to('cuda:0')
32
 
33
  def get_embedding(last_hidden_state: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
34
  sequence_lengths = attention_mask.sum(dim=1) - 1
@@ -56,15 +58,15 @@ import requests
56
  from io import BytesIO
57
 
58
  # URLs of the images
59
- url1 = "https://huggingface.co/Tevatron/dse-phi3-docmatix-v1/resolve/main/animal-llama.png"
60
- url2 = "https://huggingface.co/Tevatron/dse-phi3-docmatix-v1/resolve/main/meta-llama.png"
61
 
62
  # Download and open images
63
  response1 = requests.get(url1)
64
  response2 = requests.get(url2)
65
 
66
- passage_image1 = Image.open(BytesIO(response1.content))
67
- passage_image2 = Image.open(BytesIO(response2.content))
68
 
69
  passage_images = [passage_image1, passage_image2]
70
  passage_prompts = ["<|image_1|>\nWhat is shown in this image?</s>", "<|image_2|>\nWhat is shown in this image?</s>"]
 
3
  - en
4
  license: mit
5
  library_name: Tevatron
6
+ tag:
7
+ - vidore
8
  datasets:
9
  - Tevatron/docmatix-ir
10
  - HuggingFaceM4/Docmatix
11
  - Tevatron/msmarco-passage-aug
12
  ---
13
 
14
+ # DSE-Phi3-Docmatix-V2
15
 
16
+ DSE-Phi3-Docmatix-V2 is a bi-encoder model designed to encode document screenshots into dense vectors for document retrieval. The Document Screenshot Embedding ([DSE](https://arxiv.org/abs/2406.11251)) approach captures documents in their original visual format, preserving all information such as text, images, and layout, thus avoiding tedious parsing and potential information loss.
17
 
18
+ The model, `Tevatron/dse-phi3-docmatix-v2`, is trained using 1/10 of the `Tevatron/docmatix-ir` dataset, a variant of `HuggingFaceM4/Docmatix` specifically adapted for training PDF retrievers with Vision Language Models in open-domain question answering scenarios. For more information on dataset filtering and hard negative mining, refer to the [docmatix-ir](https://huggingface.co/datasets/Tevatron/docmatix-ir/blob/main/README.md) dataset page.
19
 
20
  DSE has strong zero-shot effectiveness for document retrieval both with visual input and text input.
21
+ For example, DSE-Phi3-Docmatix-V2 achieves 77.6 nDCG@5 on [ViDoRE](https://huggingface.co/spaces/vidore/vidore-leaderboard) leaderboard in **zero-shot setting** (without finetuning with ViDoRe training data).
22
 
23
 
24
  ## How to Use the Model
 
29
  import torch
30
  from transformers import AutoProcessor, AutoModelForCausalLM
31
 
32
+ processor = AutoProcessor.from_pretrained('Tevatron/dse-phi3-docmatix-v2', trust_remote_code=True)
33
+ model = AutoModelForCausalLM.from_pretrained('Tevatron/dse-phi3-docmatix-v2', trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, use_cache=False).to('cuda:0')
34
 
35
  def get_embedding(last_hidden_state: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
36
  sequence_lengths = attention_mask.sum(dim=1) - 1
 
58
  from io import BytesIO
59
 
60
  # URLs of the images
61
+ url1 = "https://huggingface.co/Tevatron/dse-phi3-docmatix-v2/resolve/main/animal-llama.png"
62
+ url2 = "https://huggingface.co/Tevatron/dse-phi3-docmatix-v2/resolve/main/meta-llama.png"
63
 
64
  # Download and open images
65
  response1 = requests.get(url1)
66
  response2 = requests.get(url2)
67
 
68
+ passage_image1 = Image.open(BytesIO(response1.content)).resize((1344, 1344))
69
+ passage_image2 = Image.open(BytesIO(response2.content)).resize((1344, 1344))
70
 
71
  passage_images = [passage_image1, passage_image2]
72
  passage_prompts = ["<|image_1|>\nWhat is shown in this image?</s>", "<|image_2|>\nWhat is shown in this image?</s>"]