|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from torch import nn |
|
from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig |
|
from transformers.models.clip.modeling_clip import CLIPAttention |
|
from transformers.utils import logging |
|
|
|
try: |
|
from flash_attn import flash_attn_func |
|
except ImportError: |
|
pass |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
MAX_INPUT_ID = int(1e9) |
|
|
|
CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig( |
|
attention_dropout=0.0, |
|
dropout=0.0, |
|
hidden_act="quick_gelu", |
|
hidden_size=1024, |
|
image_size=336, |
|
initializer_factor=1.0, |
|
initializer_range=0.02, |
|
intermediate_size=4096, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=16, |
|
num_channels=3, |
|
num_hidden_layers=24, |
|
patch_size=14, |
|
projection_dim=768 |
|
) |
|
|
|
class CLIPAttentionFA2(CLIPAttention): |
|
"""Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)""" |
|
|
|
def forward(self, |
|
hidden_states, |
|
attention_mask=None, |
|
causal_attention_mask=None, |
|
output_attentions=False, |
|
): |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask" |
|
assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask" |
|
assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions" |
|
|
|
bsz, tgt_len, embed_dim = hidden_states.size() |
|
query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim) |
|
key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim) |
|
value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim) |
|
|
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout_p=self.dropout if self.training else 0.0, |
|
softmax_scale=self.scale, |
|
causal=False, |
|
).reshape(bsz, tgt_len, embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
return attn_output, None |
|
|
|
|
|
class Phi3ImageEmbedding(nn.Module): |
|
"""Phi3 Image embedding.""" |
|
|
|
def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None: |
|
super().__init__() |
|
|
|
|
|
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size |
|
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): |
|
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop |
|
self.drop = nn.Dropout(embd_drop) |
|
else: |
|
self.drop = None |
|
|
|
self.wte = wte |
|
|
|
if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model': |
|
assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel' |
|
assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel' |
|
assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel' |
|
assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336' |
|
clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG |
|
self.img_processor = CLIPVisionModel(clip_config) |
|
image_dim_out = config.img_processor['image_dim_out'] |
|
self.num_img_tokens = config.img_processor['num_img_tokens'] |
|
|
|
|
|
if config._attn_implementation == 'flash_attention_2': |
|
for layer in self.img_processor.vision_model.encoder.layers: |
|
clip_fa2 = CLIPAttentionFA2(clip_config) |
|
del layer.self_attn |
|
layer.self_attn = clip_fa2 |
|
else: |
|
raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented') |
|
|
|
self.image_dim_out = image_dim_out |
|
self.img_sizes = None |
|
|
|
|
|
self.use_hd_transform = kwargs.get('use_hd_transform', False) |
|
self.with_learnable_separator = kwargs.get('with_learnable_separator', False) |
|
self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub') |
|
|
|
assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value' |
|
if self.with_learnable_separator: |
|
assert self.use_hd_transform, 'learnable separator is only for hd transform' |
|
|
|
self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4])) |
|
self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4])) |
|
logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}') |
|
|
|
projection_cls = kwargs.get('projection_cls', 'linear') |
|
if projection_cls == 'linear': |
|
self.img_projection = nn.Linear(image_dim_out, hidden_size) |
|
elif projection_cls == 'mlp' and self.use_hd_transform: |
|
dim_projection = hidden_size |
|
depth = 2 |
|
layers = [nn.Linear(image_dim_out * 4, dim_projection)] |
|
for _ in range(1, depth): |
|
layers.extend([nn.GELU(), |
|
nn.Linear(dim_projection, dim_projection)]) |
|
self.img_projection = nn.Sequential(*layers) |
|
elif projection_cls == 'mlp': |
|
dim_projection = hidden_size |
|
depth = 2 |
|
layers = [nn.Linear(image_dim_out, dim_projection)] |
|
for _ in range(1, depth): |
|
layers.extend([nn.GELU(), |
|
nn.Linear(dim_projection, dim_projection)]) |
|
self.img_projection = nn.Sequential(*layers) |
|
else: |
|
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') |
|
|
|
self.vocab_size = config.vocab_size |
|
self.img_features = None |
|
|
|
if isinstance(config.img_processor, dict): |
|
self.layer_idx = config.img_processor.get('layer_idx', -2) |
|
self.type_feature = config.img_processor.get('type_feature', 'patch') |
|
else: |
|
self.layer_idx = -2 |
|
self.type_feature = 'patch' |
|
|
|
|
|
def set_img_features(self, img_features: torch.FloatTensor) -> None: |
|
self.img_features = img_features |
|
|
|
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None: |
|
self.img_sizes = img_sizes |
|
|
|
def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor: |
|
LAYER_IDX = self.layer_idx |
|
TYPE_FEATURE = self.type_feature |
|
|
|
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True) |
|
img_feature = img_processor_output.hidden_states[LAYER_IDX] |
|
|
|
if TYPE_FEATURE == "patch": |
|
patch_feature = img_feature[:, 1:] |
|
return patch_feature |
|
|
|
raise NotImplementedError |
|
|
|
def forward( |
|
self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None |
|
) -> torch.FloatTensor: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
|
|
|
|
positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True) |
|
has_image = len(positions[0].tolist()) > 0 |
|
input_ids = input_ids.clamp_min(0).clamp_max(self.vocab_size).detach() |
|
hidden_states = self.wte(input_ids) |
|
|
|
if has_image: |
|
assert self.use_hd_transform |
|
num_images, num_crops, c, h, w = pixel_values.shape |
|
assert c == 3 and h == w == 336 |
|
img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape( |
|
num_images, num_crops, -1, self.image_dim_out |
|
) |
|
image_features_proj = self.hd_feature_transform(img_features, image_sizes) |
|
hidden_states = hidden_states.index_put( |
|
positions, image_features_proj, accumulate=False |
|
) |
|
|
|
if self.drop is not None: |
|
hidden_states = self.drop(hidden_states) |
|
|
|
return hidden_states |
|
|
|
def hd_feature_transform(self, image_features, image_sizes): |
|
""" |
|
image_features: (num_images, num_crops+1, 24*24, 1024) |
|
""" |
|
assert ( |
|
self.hd_transform_order == 'sub_glb' |
|
), f'hd_transform_order `{self.hd_transform_order}` not implemented' |
|
if isinstance(self.img_projection, nn.Sequential): |
|
target_device = self.img_projection[0].bias.device |
|
target_dtype = self.img_projection[0].bias.dtype |
|
else: |
|
target_device = self.img_projection.bias.device |
|
target_dtype = self.img_projection.bias.dtype |
|
|
|
global_image_features = image_features[:, 0] |
|
|
|
global_image_features_hd = self.reshape_hd_patches_2x2merge(global_image_features, 1, 1) |
|
global_image_features_hd_newline = self.add_image_newline(global_image_features_hd) |
|
|
|
all_image_embeddings = [] |
|
|
|
|
|
for i, img_size in enumerate(image_sizes): |
|
h, w = img_size |
|
h_crop = h // 336 |
|
w_crop = w // 336 |
|
num_crops = h_crop * w_crop |
|
|
|
|
|
|
|
sub_image_features = image_features[i, 1 : 1 + num_crops] |
|
sub_image_features_hd = self.reshape_hd_patches_2x2merge( |
|
sub_image_features, h_crop, w_crop |
|
) |
|
sub_image_features_hd_newline = self.add_image_newline(sub_image_features_hd) |
|
|
|
|
|
all_image_embeddings.extend( |
|
[ |
|
sub_image_features_hd_newline.squeeze(0), |
|
self.glb_GN.squeeze(0), |
|
global_image_features_hd_newline[i], |
|
] |
|
) |
|
|
|
image_features_proj = self.img_projection( |
|
torch.cat(all_image_embeddings, dim=0).to(target_device).to(target_dtype) |
|
) |
|
|
|
return image_features_proj |
|
|
|
def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop): |
|
""" |
|
image_features: (num_images*num_crops, 24*24, 1024) |
|
output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops |
|
""" |
|
N, L, C = image_features.shape |
|
assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0 |
|
num_images = N // (h_crop * w_crop) |
|
H = int(L**0.5) |
|
image_features_hd = ( |
|
image_features.reshape(N, H, H, C) |
|
.reshape(N, H // 2, 2, H // 2, 2, C) |
|
.permute(0, 1, 3, 2, 4, 5) |
|
.reshape(N, -1, 4 * C) |
|
.reshape( |
|
num_images, h_crop, w_crop, H // 2, H // 2, -1 |
|
) |
|
.permute(0, 1, 3, 2, 4, 5) |
|
.reshape( |
|
num_images, h_crop * H // 2, w_crop * H // 2, 4 * C |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return image_features_hd |
|
|
|
def add_image_newline(self, image_features_hd): |
|
""" |
|
image_features_hd: (num_images, h_crop*12, w_crop*12, 4096) |
|
output: (num_images, (h_crop*12) * (w_crop*12+1), 4096) |
|
""" |
|
num_images, h, w, hid_dim = image_features_hd.shape |
|
|
|
newline_embeddings = self.sub_GN.expand(num_images, h, -1, -1) |
|
image_features_hd_newline = torch.cat( |
|
[image_features_hd, newline_embeddings], dim=2 |
|
).reshape(num_images, -1, hid_dim) |
|
return image_features_hd_newline |
|
|