import onnxruntime as rt from sentence_transformers.util import cos_sim from sentence_transformers import SentenceTransformer import transformers import gc import json with open('conversion_config.json') as json_file: conversion_config = json.load(json_file) model_id = conversion_config["model_id"] number_of_generated_embeddings = conversion_config["number_of_generated_embeddings"] precision_to_filename_map = conversion_config["precision_to_filename_map"] sentences_1 = 'How is the weather today?' sentences_2 = 'What is the current weather like today?' print(f"Testing on cosine similiarity between sentences: \n'{sentences_1}'\n'{sentences_2}'\n\n\n") tokenizer = transformers.AutoTokenizer.from_pretrained("./") enc1 = tokenizer(sentences_1) enc2 = tokenizer(sentences_2) for precision, file_name in precision_to_filename_map.items(): onnx_session = rt.InferenceSession(file_name) embeddings_1_onnx = onnx_session.run(None, {"input_ids": [enc1.input_ids], "attention_mask": [enc1.attention_mask]})[1][0] embeddings_2_onnx = onnx_session.run(None, {"input_ids": [enc2.input_ids], "attention_mask": [enc2.attention_mask]})[1][0] del onnx_session gc.collect() print(f'Cosine similiarity for ONNX model with precision "{precision}" is {str(cos_sim(embeddings_1_onnx, embeddings_2_onnx))}') model = SentenceTransformer(model_id, trust_remote_code=True) embeddings_1_sentence_transformer = model.encode(sentences_1, normalize_embeddings=True, trust_remote_code=True) embeddings_2_sentence_transformer = model.encode(sentences_2, normalize_embeddings=True, trust_remote_code=True) print('Cosine similiarity for original sentence transformer model is '+str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))