File size: 6,695 Bytes
ff33345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import json
import shutil

from optimum.exporters.onnx import main_export
import onnx
from onnxconverter_common import float16
import onnxruntime as rt
from onnxruntime.tools.onnx_model_utils import *
from onnxruntime.quantization import quantize_dynamic, QuantType
import huggingface_hub

def add_mean_pooling(input_model, output_model, op, IR, output_embeddings_number):
    model = onnx.load(input_model)
    model_ir8 = onnx.helper.make_model(model.graph, ir_version = IR, opset_imports = [op]) #to be sure that we have compatible opset and IR version
    
    minus_one_axis = onnx.helper.make_tensor(
        name = "minus_one_axis", 
        data_type = onnx.TensorProto.INT64, 
        dims = [1], 
        vals = [-1])
    
    model_ir8.graph.initializer.append(minus_one_axis)
    
    mask_clip_lower_limit = onnx.helper.make_tensor(
        name = "mask_clip_lower_limit", 
        data_type = onnx.TensorProto.FLOAT, 
        dims = [1], 
        vals = [1e-9])
    
    model_ir8.graph.initializer.append(mask_clip_lower_limit)
    
    sum_one_axis = onnx.helper.make_tensor(
        name = "sum_one_axis", 
        data_type = onnx.TensorProto.INT64, 
        dims = [1], 
        vals = [1])
    
    model_ir8.graph.initializer.append(sum_one_axis)
    
    attention_mask_cast_op = onnx.helper.make_node(
        "Cast",
        inputs=["attention_mask"],
        outputs=["attention_mask_fp32"],
        to=onnx.TensorProto.FLOAT
    )
    
    model_ir8.graph.node.append(attention_mask_cast_op)
    
    expand_dims_op = onnx.helper.make_node(
        "Unsqueeze",
        inputs=["attention_mask_fp32", "minus_one_axis"],
        outputs=["unsqueezed_attention_mask"],
    )
    
    model_ir8.graph.node.append(expand_dims_op)
    
    shape_op = onnx.helper.make_node(
        "Shape",
        inputs = ["last_hidden_state"],
        outputs = ["last_hidden_state_shape"]
    )
    
    model_ir8.graph.node.append(shape_op)
        
    broadcast_to_op = onnx.helper.make_node(
        "Expand",
        inputs=["unsqueezed_attention_mask", "last_hidden_state_shape"],
        outputs=["expanded_attention_mask"],
    )
    
    model_ir8.graph.node.append(broadcast_to_op)
    
    multiply_op = onnx.helper.make_node(
        "Mul",
        inputs=["last_hidden_state", "expanded_attention_mask"],
        outputs=["last_hidden_state_x_expanded_attention_mask"],
    )
    
    model_ir8.graph.node.append(multiply_op)
    
    sum_embeddings_op = onnx.helper.make_node(
        "ReduceSum",
        inputs=["last_hidden_state_x_expanded_attention_mask", "sum_one_axis"],
        outputs=["sum_last_hidden_state_x_expanded_attention_mask"],
    )
    
    model_ir8.graph.node.append(sum_embeddings_op)
    
    sum_mask_op = onnx.helper.make_node(
        "ReduceSum",
        inputs=["expanded_attention_mask", "sum_one_axis"],
        outputs=["sum_expanded_attention_mask"],
    )
    
    model_ir8.graph.node.append(sum_mask_op)
    
    clip_mask_op = onnx.helper.make_node(
        "Clip",
        inputs=["sum_expanded_attention_mask", "mask_clip_lower_limit"],
        outputs=["clipped_sum_expanded_attention_mask"],
    )
    
    model_ir8.graph.node.append(clip_mask_op)
    
    pooled_embeddings_op = onnx.helper.make_node(
        "Div",
        inputs=["sum_last_hidden_state_x_expanded_attention_mask", "clipped_sum_expanded_attention_mask"],
        outputs=["pooled_embeddings"],
        # outputs=["sentence_embeddings"]
    )
    
    model_ir8.graph.node.append(pooled_embeddings_op)
    
    squeeze_pooled_embeddings_op = onnx.helper.make_node(
        "Squeeze",
        inputs=["pooled_embeddings", "sum_one_axis"],
        outputs=["squeezed_pooled_embeddings"]
        
    )
    
    model_ir8.graph.node.append(squeeze_pooled_embeddings_op)
    
    normalized_pooled_embeddings_op = onnx.helper.make_node(
        "Normalizer",
        domain="ai.onnx.ml",
        inputs=["squeezed_pooled_embeddings"],
        outputs=["sentence_embedding"],
        norm = "L2"
    )
    
    
    model_ir8.graph.node.append(normalized_pooled_embeddings_op)
    
    sentence_embeddings_output = onnx.helper.make_tensor_value_info(
        "sentence_embedding", 
        onnx.TensorProto.FLOAT, 
        shape=["batch_size", output_embeddings_number]
    )
    
    model_ir8.graph.output.append(sentence_embeddings_output)
    
    for node in model_ir8.graph.output:
        if node.name == "last_hidden_state":
            model_ir8.graph.output.remove(node)
    
    model_ir8 = onnx.helper.make_model(model_ir8.graph, ir_version = 8, opset_imports = [op]) #to be sure that we have compatible opset and IR version
    
    onnx.save(model_ir8, output_model, save_as_external_data = False)

    

with open('conversion_config.json') as json_file:
    conversion_config = json.load(json_file)


    model_id = conversion_config["model_id"]
    number_of_generated_embeddings = conversion_config["number_of_generated_embeddings"]
    precision_to_filename_map = conversion_config["precision_to_filename_map"]
    opset = conversion_config["opset"]
    IR = conversion_config["IR"]

    
    op = onnx.OperatorSetIdProto()
    op.version = opset
    
    
    if not os.path.exists("onnx"):
        os.makedirs("onnx")

    print("Exporting the main model version")
    try:
        main_export(model_name_or_path=model_id, output="./",  opset=opset, trust_remote_code=True, task="feature-extraction", dtype="fp32")
    except:
        huggingface_hub.hf_hub_download(repo_id=model_id, filename="model.onnx", local_dir="./")
        
    
    if "fp32" in precision_to_filename_map:
        print("Exporting the fp32 onnx file...")
        
        shutil.copyfile('model.onnx', precision_to_filename_map["fp32"]) 
        add_mean_pooling("model.onnx", precision_to_filename_map["fp32"], op, IR, number_of_generated_embeddings)
        
        print("Done\n\n")

    if "int8" in precision_to_filename_map:
        print("Quantizing fp32 model to int8...")
        quantize_dynamic("model.onnx",  precision_to_filename_map["int8"], weight_type=QuantType.QInt8)
        add_mean_pooling( precision_to_filename_map["int8"], precision_to_filename_map["int8"], op, IR, number_of_generated_embeddings)
        print("Done\n\n")
        
    if "uint8" in precision_to_filename_map:
        print("Quantizing fp32 model to uint8...")
        quantize_dynamic("model.onnx", precision_to_filename_map["uint8"], weight_type=QuantType.QUInt8)
        add_mean_pooling( precision_to_filename_map["uint8"], precision_to_filename_map["uint8"], op, IR, number_of_generated_embeddings)
        print("Done\n\n")
        
    os.remove("model.onnx")