Update README.md
Browse files
README.md
CHANGED
@@ -910,7 +910,7 @@ model-index:
|
|
910 |
- type: ndcg_at_3
|
911 |
value: 35.829
|
912 |
- type: ndcg_at_5
|
913 |
-
value: 38
|
914 |
- type: precision_at_1
|
915 |
value: 31.818
|
916 |
- type: precision_at_10
|
@@ -2054,7 +2054,7 @@ model-index:
|
|
2054 |
- type: mrr_at_1000
|
2055 |
value: 70.722
|
2056 |
- type: mrr_at_3
|
2057 |
-
value: 68
|
2058 |
- type: mrr_at_5
|
2059 |
value: 69.56700000000001
|
2060 |
- type: ndcg_at_1
|
@@ -2121,7 +2121,7 @@ model-index:
|
|
2121 |
- type: dot_precision
|
2122 |
value: 92.90187891440502
|
2123 |
- type: dot_recall
|
2124 |
-
value: 89
|
2125 |
- type: euclidean_accuracy
|
2126 |
value: 99.84851485148515
|
2127 |
- type: euclidean_ap
|
@@ -2222,7 +2222,7 @@ model-index:
|
|
2222 |
- type: map_at_5
|
2223 |
value: 1.076
|
2224 |
- type: mrr_at_1
|
2225 |
-
value: 86
|
2226 |
- type: mrr_at_10
|
2227 |
value: 91.8
|
2228 |
- type: mrr_at_100
|
@@ -2230,11 +2230,11 @@ model-index:
|
|
2230 |
- type: mrr_at_1000
|
2231 |
value: 91.8
|
2232 |
- type: mrr_at_3
|
2233 |
-
value: 91
|
2234 |
- type: mrr_at_5
|
2235 |
value: 91.8
|
2236 |
- type: ndcg_at_1
|
2237 |
-
value: 82
|
2238 |
- type: ndcg_at_10
|
2239 |
value: 78.07300000000001
|
2240 |
- type: ndcg_at_100
|
@@ -2246,9 +2246,9 @@ model-index:
|
|
2246 |
- type: ndcg_at_5
|
2247 |
value: 81.059
|
2248 |
- type: precision_at_1
|
2249 |
-
value: 86
|
2250 |
- type: precision_at_10
|
2251 |
-
value: 83
|
2252 |
- type: precision_at_100
|
2253 |
value: 59.38
|
2254 |
- type: precision_at_1000
|
@@ -2490,14 +2490,11 @@ model-index:
|
|
2490 |
task:
|
2491 |
type: PairClassification
|
2492 |
tags:
|
2493 |
-
- sentence-transformers
|
2494 |
- feature-extraction
|
2495 |
- sentence-similarity
|
2496 |
-
- transformers
|
2497 |
- mteb
|
2498 |
- onnx
|
2499 |
- teradata
|
2500 |
-
|
2501 |
---
|
2502 |
# A Teradata Vantage compatible Embeddings Model
|
2503 |
|
@@ -2649,5 +2646,4 @@ print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(em
|
|
2649 |
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))
|
2650 |
```
|
2651 |
|
2652 |
-
You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py)
|
2653 |
-
|
|
|
910 |
- type: ndcg_at_3
|
911 |
value: 35.829
|
912 |
- type: ndcg_at_5
|
913 |
+
value: 38
|
914 |
- type: precision_at_1
|
915 |
value: 31.818
|
916 |
- type: precision_at_10
|
|
|
2054 |
- type: mrr_at_1000
|
2055 |
value: 70.722
|
2056 |
- type: mrr_at_3
|
2057 |
+
value: 68
|
2058 |
- type: mrr_at_5
|
2059 |
value: 69.56700000000001
|
2060 |
- type: ndcg_at_1
|
|
|
2121 |
- type: dot_precision
|
2122 |
value: 92.90187891440502
|
2123 |
- type: dot_recall
|
2124 |
+
value: 89
|
2125 |
- type: euclidean_accuracy
|
2126 |
value: 99.84851485148515
|
2127 |
- type: euclidean_ap
|
|
|
2222 |
- type: map_at_5
|
2223 |
value: 1.076
|
2224 |
- type: mrr_at_1
|
2225 |
+
value: 86
|
2226 |
- type: mrr_at_10
|
2227 |
value: 91.8
|
2228 |
- type: mrr_at_100
|
|
|
2230 |
- type: mrr_at_1000
|
2231 |
value: 91.8
|
2232 |
- type: mrr_at_3
|
2233 |
+
value: 91
|
2234 |
- type: mrr_at_5
|
2235 |
value: 91.8
|
2236 |
- type: ndcg_at_1
|
2237 |
+
value: 82
|
2238 |
- type: ndcg_at_10
|
2239 |
value: 78.07300000000001
|
2240 |
- type: ndcg_at_100
|
|
|
2246 |
- type: ndcg_at_5
|
2247 |
value: 81.059
|
2248 |
- type: precision_at_1
|
2249 |
+
value: 86
|
2250 |
- type: precision_at_10
|
2251 |
+
value: 83
|
2252 |
- type: precision_at_100
|
2253 |
value: 59.38
|
2254 |
- type: precision_at_1000
|
|
|
2490 |
task:
|
2491 |
type: PairClassification
|
2492 |
tags:
|
|
|
2493 |
- feature-extraction
|
2494 |
- sentence-similarity
|
|
|
2495 |
- mteb
|
2496 |
- onnx
|
2497 |
- teradata
|
|
|
2498 |
---
|
2499 |
# A Teradata Vantage compatible Embeddings Model
|
2500 |
|
|
|
2646 |
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))
|
2647 |
```
|
2648 |
|
2649 |
+
You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py)
|
|