File size: 2,077 Bytes
a4cec3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: mit
base_model: microsoft/deberta-v3-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Classifier_with_external_sets_03
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Classifier_with_external_sets_03
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6931
- Accuracy: 0.5034
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.9983 | 289 | 0.6943 | 0.5034 |
| 0.7019 | 2.0 | 579 | 0.6932 | 0.4966 |
| 0.7019 | 2.9983 | 868 | 0.7004 | 0.5034 |
| 0.6978 | 4.0 | 1158 | 0.6968 | 0.4966 |
| 0.6978 | 4.9983 | 1447 | 0.6953 | 0.4966 |
| 0.6961 | 6.0 | 1737 | 0.6932 | 0.5034 |
| 0.6958 | 6.9983 | 2026 | 0.6932 | 0.5034 |
| 0.6958 | 8.0 | 2316 | 0.6934 | 0.4966 |
| 0.6942 | 8.9983 | 2605 | 0.6940 | 0.5034 |
| 0.6942 | 9.9827 | 2890 | 0.6931 | 0.5034 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|