Safetensors
English
File size: 10,166 Bytes
fa57efb
 
 
 
 
 
 
 
 
 
 
 
 
3b2d1c3
fa57efb
107faf9
 
fa57efb
3b2d1c3
fa57efb
 
 
107faf9
28b6504
 
 
fa57efb
 
3b2d1c3
fa57efb
 
28b6504
fa57efb
28b6504
fa57efb
 
 
28b6504
 
fa57efb
28b6504
 
 
 
 
 
 
 
 
 
 
 
 
 
3a4b81e
 
fa57efb
 
28b6504
fa57efb
28b6504
 
fa57efb
28b6504
fa57efb
28b6504
 
fa57efb
 
 
1c074f9
fa57efb
 
1c074f9
fa57efb
 
 
1c074f9
 
fa57efb
1c074f9
fa57efb
 
 
 
 
 
 
 
 
 
e13c61b
 
 
 
35dea3e
 
3a4b81e
 
35dea3e
e13c61b
 
 
fa57efb
 
 
 
 
 
 
 
 
 
3a4b81e
fa57efb
 
1281794
fa57efb
 
 
1281794
fa57efb
 
1281794
fa57efb
3a4b81e
fa57efb
 
1281794
fa57efb
 
 
1281794
fa57efb
 
1281794
fa57efb
 
 
 
 
 
 
 
3a4b81e
fa57efb
 
1281794
fa57efb
 
1281794
fa57efb
 
1281794
fa57efb
3a4b81e
fa57efb
 
1281794
fa57efb
 
1281794
fa57efb
 
1281794
fa57efb
 
59b294b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28b6504
59b294b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa57efb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
license: other
license_name: tencent-hunyuan-community
license_link: https://huggingface.co./Tencent-Hunyuan/HunyuanDiT/blob/main/LICENSE.txt
language:
- en
---
# HunyuanDiT LoRA

Language: **English**

## Instructions

 The dependencies and installation are basically the same as the [**base model**](https://huggingface.co./Tencent-Hunyuan/HunyuanDiT-v1.2).

 We provide two types of trained LoRA weights for you to test.
 
 Then download the model using the following commands:
 
```bash
cd HunyuanDiT
# Use the huggingface-cli tool to download the model.
huggingface-cli download Tencent-Hunyuan/HYDiT-LoRA --local-dir ./ckpts/t2i/lora

# Quick start
python sample_t2i.py --prompt "青花瓷风格,一只猫在追蝴蝶"  --no-enhance --load-key ema --lora-ckpt ./ckpts/t2i/lora/porcelain --infer-mode fa
```


## Training

We provide three types of weights for fine-tuning LoRA, `ema`, `module` and `distill`, and you can choose according to the actual effect. By default, we use `ema` weights. 

Here is an example for LoRA with HunYuanDiT v1.2, we load the `distill` weights into the main model and perform LoRA fine-tuning through the `resume_module_root=./ckpts/t2i/model/pytorch_model_distill.pt` setting. 

If multiple resolution are used, you need to add the `--multireso` and `--reso-step 64 ` parameter. 

If you want to train LoRA with HunYuanDiT v1.1, you could add `--use-style-cond`, `--size-cond 1024 1024` and `--beta-end 0.03`.

```bash
model='DiT-g/2'                                                   # model type
task_flag="lora_porcelain_ema_rank64"                             # task flag
resume_module_root=./ckpts/t2i/model/pytorch_model_distill.pt     # resume checkpoint
index_file=dataset/porcelain/jsons/porcelain.json                 # the selected data indices
results_dir=./log_EXP                                             # save root for results
batch_size=1                                                      # training batch size
image_size=1024                                                   # training image resolution
grad_accu_steps=2                                                 # gradient accumulation steps
warmup_num_steps=0                                                # warm-up steps
lr=0.0001                                                         # learning rate
ckpt_every=100                                                    # create a ckpt every a few steps.
ckpt_latest_every=2000                                            # create a ckpt named `latest.pt` every a few steps.
rank=64                                                           # rank of lora
max_training_steps=2000                                           # Maximum training iteration steps

PYTHONPATH=./ deepspeed hydit/train_deepspeed.py \
    --task-flag ${task_flag} \
    --model ${model} \
    --training-parts lora \
    --rank ${rank} \
    --resume \
    --resume-module-root ${resume_module_root} \
    --lr ${lr} \
    --noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.018 \
    --predict-type v_prediction \
    --uncond-p 0 \
    --uncond-p-t5 0 \
    --index-file ${index_file} \
    --random-flip \
    --batch-size ${batch_size} \
    --image-size ${image_size} \
    --global-seed 999 \
    --grad-accu-steps ${grad_accu_steps} \
    --warmup-num-steps ${warmup_num_steps} \
    --use-flash-attn \
    --use-fp16 \
    --ema-dtype fp32 \
    --results-dir ${results_dir} \
    --ckpt-every ${ckpt_every} \
    --max-training-steps ${max_training_steps}\
    --ckpt-latest-every ${ckpt_latest_every} \
    --log-every 10 \
    --deepspeed \
    --deepspeed-optimizer \
    --use-zero-stage 2 \
    --qk-norm \
    --rope-img base512 \
    --rope-real \
    "$@"
```

Recommended parameter settings

|     Parameter     |  Description  |          Recommended Parameter Value                               | Note|
|:---------------:|:---------:|:---------------------------------------------------:|:--:|
|   `--batch_size` |    Training batch size    |        1        | Depends on GPU memory| 
|   `--grad-accu-steps` |    Size of gradient accumulation    |       2        | - |
|   `--rank` |    Rank of lora    |       64        | Choosing from 8-128|
|   `--max-training-steps` |    Training steps  |       2000        | Depend on training data size, for reference apply 2000 steps on 100 images|
|   `--lr` |    Learning rate  |        0.0001        | - |



## Inference

### Using Gradio

Make sure you have activated the conda environment before running the following command.

> ⚠️ Important Reminder:  
> We recommend not using prompt enhance, as it may lead to the disappearance of style words. 

```shell
# jade style

# Using Flash Attention for acceleration.
python app/hydit_app.py --infer-mode fa --load-key ema --lora-ckpt ./ckpts/t2i/lora/jade

# You can disable the enhancement model if the GPU memory is insufficient.
# The enhancement will be unavailable until you restart the app without the `--no-enhance` flag. 
python app/hydit_app.py --infer-mode fa --no-enhance --load-key ema --lora-ckpt  ./ckpts/t2i/lora/jade 

# Start with English UI
python app/hydit_app.py --infer-mode fa --lang en --load-key ema --lora-ckpt ./ckpts/t2i/lora/jade 

# porcelain style 

# Using Flash Attention for acceleration.
python app/hydit_app.py --infer-mode fa --load-key ema --lora-ckpt ./ckpts/t2i/lora/porcelain

# You can disable the enhancement model if the GPU memory is insufficient.
# The enhancement will be unavailable until you restart the app without the `--no-enhance` flag. 
python app/hydit_app.py --infer-mode fa --no-enhance --load-key ema --lora-ckpt  ./ckpts/t2i/lora/porcelain

# Start with English UI
python app/hydit_app.py --infer-mode fa --lang en --load-key ema --lora-ckpt ./ckpts/t2i/lora/porcelain
```


### Using Command Line

We provide several commands to quick start: 

```shell
# jade style

# Prompt Enhancement + Text-to-Image. Torch mode
python sample_t2i.py --infer-mode fa --prompt "玉石绘画风格,一只猫在追蝴蝶" --load-key ema --lora-ckpt ./ckpts/t2i/lora/jade

# Only Text-to-Image. Torch mode
python sample_t2i.py --infer-mode fa --prompt "玉石绘画风格,一只猫在追蝴蝶" --no-enhance --load-key ema --lora-ckpt ./ckpts/t2i/lora/jade

# Generate an image with other image sizes.
python sample_t2i.py --infer-mode fa --prompt "玉石绘画风格,一只猫在追蝴蝶" --image-size 1280 768 --load-key ema --lora-ckpt ./ckpts/t2i/lora/jade

# porcelain style 

# Prompt Enhancement + Text-to-Image. Torch mode
python sample_t2i.py --infer-mode fa --prompt "青花瓷风格,一只猫在追蝴蝶" --load-key ema --lora-ckpt ./ckpts/t2i/lora/porcelain

# Only Text-to-Image. Torch mode
python sample_t2i.py --infer-mode fa --prompt "青花瓷风格,一只猫在追蝴蝶" --no-enhance --load-key ema --lora-ckpt ./ckpts/t2i/lora/porcelain

# Generate an image with other image sizes.
python sample_t2i.py --infer-mode fa --prompt "青花瓷风格,一只猫在追蝴蝶"  --image-size 1280 768 --load-key ema --lora-ckpt ./ckpts/t2i/lora/porcelain 
```


Regarding how to use the LoRA weights we trained in diffusion, we provide the following script. To ensure compatibility with the diffuser, some modifications are made, which means that LoRA cannot be directly loaded. 

```python
import torch
from diffusers import HunyuanDiTPipeline

num_layers = 40
def load_hunyuan_dit_lora(transformer_state_dict, lora_state_dict, lora_scale):
    for i in range(num_layers):
        Wqkv = torch.matmul(lora_state_dict[f"blocks.{i}.attn1.Wqkv.lora_B.weight"], lora_state_dict[f"blocks.{i}.attn1.Wqkv.lora_A.weight"]) 
        q, k, v = torch.chunk(Wqkv, 3, dim=0)
        transformer_state_dict[f"blocks.{i}.attn1.to_q.weight"] += lora_scale * q
        transformer_state_dict[f"blocks.{i}.attn1.to_k.weight"] += lora_scale * k
        transformer_state_dict[f"blocks.{i}.attn1.to_v.weight"] += lora_scale * v

        out_proj = torch.matmul(lora_state_dict[f"blocks.{i}.attn1.out_proj.lora_B.weight"], lora_state_dict[f"blocks.{i}.attn1.out_proj.lora_A.weight"]) 
        transformer_state_dict[f"blocks.{i}.attn1.to_out.0.weight"] += lora_scale * out_proj

        q_proj = torch.matmul(lora_state_dict[f"blocks.{i}.attn2.q_proj.lora_B.weight"], lora_state_dict[f"blocks.{i}.attn2.q_proj.lora_A.weight"])
        transformer_state_dict[f"blocks.{i}.attn2.to_q.weight"] += lora_scale * q_proj

        kv_proj = torch.matmul(lora_state_dict[f"blocks.{i}.attn2.kv_proj.lora_B.weight"], lora_state_dict[f"blocks.{i}.attn2.kv_proj.lora_A.weight"])
        k, v = torch.chunk(kv_proj, 2, dim=0)
        transformer_state_dict[f"blocks.{i}.attn2.to_k.weight"] += lora_scale * k
        transformer_state_dict[f"blocks.{i}.attn2.to_v.weight"] += lora_scale * v

        out_proj = torch.matmul(lora_state_dict[f"blocks.{i}.attn2.out_proj.lora_B.weight"], lora_state_dict[f"blocks.{i}.attn2.out_proj.lora_A.weight"]) 
        transformer_state_dict[f"blocks.{i}.attn2.to_out.0.weight"] += lora_scale * out_proj
    
    q_proj = torch.matmul(lora_state_dict["pooler.q_proj.lora_B.weight"], lora_state_dict["pooler.q_proj.lora_A.weight"])
    transformer_state_dict["time_extra_emb.pooler.q_proj.weight"] += lora_scale * q_proj
    
    return transformer_state_dict

pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers", torch_dtype=torch.float16)
pipe.to("cuda")

from safetensors import safe_open

lora_state_dict = {}
with safe_open("./ckpts/t2i/lora/jade/adapter_model.safetensors", framework="pt", device=0) as f:
    for k in f.keys():
        lora_state_dict[k[17:]] = f.get_tensor(k) # remove 'basemodel.model'

transformer_state_dict = pipe.transformer.state_dict()
transformer_state_dict = load_hunyuan_dit_lora(transformer_state_dict, lora_state_dict, lora_scale=1.0)
pipe.transformer.load_state_dict(transformer_state_dict)

prompt = "玉石绘画风格,一只猫在追蝴蝶"
image = pipe(
    prompt, 
    num_inference_steps=100,
    guidance_scale=6.0, 
).images[0]
image.save('img.png')
```

More example prompts can be found in [example_prompts.txt](example_prompts.txt)