File size: 7,057 Bytes
1b14745 4fdd641 84d251f 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 1b14745 aa3eeef 1b14745 4fdd641 1b14745 4fdd641 1b14745 4fdd641 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
---
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
base_model: google/gemma-7b
datasets:
- ravithejads/samvaad-hi-filtered
- Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized
- Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized
- Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered
- Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered
- Telugu-LLM-Labs/marathi_alpaca_yahma_cleaned_filtered
- Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered
- Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered
- Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered
- abhinand/tamil-alpaca
- Tensoic/airoboros-3.2_kn
- Tensoic/gpt-teacher_kn
- VishnuPJ/Alpaca_Instruct_Malayalam
- Tensoic/Alpaca-Gujarati
- HydraIndicLM/punjabi_alpaca_52K
- HydraIndicLM/bengali_alpaca_dolly_67k
- OdiaGenAI/Odia_Alpaca_instructions_52k
- yahma/alpaca-cleaned
language:
- te
- en
- ta
- ml
- mr
- hi
- kn
- sd
- ne
- ur
- as
- gu
- bn
- pa
- or
library_name: transformers
pipeline_tag: text-generation
---
# Indic-gemma-7b-finetuned-sft-Navarasa-2.0
This model is based on [google/gemma-7b](https://huggingface.co./google/gemma-7b) and hase been LoRA finetuned on 15 Indian languages and English language instruction datasets:
1. #### Hindi - [ravithejads/samvaad-hi-filtered](https://huggingface.co./datasets/ravithejads/samvaad-hi-filtered), [HydraIndicLM/hindi_alpaca_dolly_67k](https://huggingface.co./datasets/HydraIndicLM/hindi_alpaca_dolly_67k)(sampled)
2. #### Telugu - [Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized](https://huggingface.co./datasets/Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized), [Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized](https://huggingface.co./datasets/Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized)
3. #### Marathi - [Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered](https://huggingface.co./datasets/Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered)
4. #### Urdu - [Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered](https://huggingface.co./datasets/Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered)
5. #### Assamese - [Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered](https://huggingface.co./datasets/Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered)
6. #### Konkani - [Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered](https://huggingface.co./datasets/Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered)
7. #### Nepali - [Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered](https://huggingface.co./datasets/Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered)
8. #### Sindhi - [Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered](https://huggingface.co./datasets/Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered)
9. #### Tamil - [abhinand/tamil-alpaca](https://huggingface.co./datasets/abhinand/tamil-alpaca)
10. #### Kannada - [Tensoic/airoboros-3.2_kn](https://huggingface.co./datasets/Tensoic/airoboros-3.2_kn), [Tensoic/gpt-teacher_kn](https://huggingface.co./datasets/Tensoic/gpt-teacher_kn)
11. #### Malayalam - [VishnuPJ/Alpaca_Instruct_Malayalam](https://huggingface.co./datasets/VishnuPJ/Alpaca_Instruct_Malayalam)
12. #### Gujarati - [Tensoic/Alpaca-Gujarati](https://huggingface.co./datasets/Tensoic/Alpaca-Gujarati)
13. #### Punjabi - [HydraIndicLM/punjabi_alpaca_52K](https://huggingface.co./datasets/HydraIndicLM/punjabi_alpaca_52K)
14. #### Bengali - [HydraIndicLM/bengali_alpaca_dolly_67k](https://huggingface.co./datasets/HydraIndicLM/bengali_alpaca_dolly_67k)(alpaca filtered)
15. #### Odia - [OdiaGenAI/Odia_Alpaca_instructions_52k](https://huggingface.co./datasets/OdiaGenAI/Odia_Alpaca_instructions_52k), [OdiaGenAI/gpt-teacher-roleplay-odia-3k](https://huggingface.co./datasets/OdiaGenAI/gpt-teacher-roleplay-odia-3k)
16. #### English - [yahma/alpaca-cleaned](https://huggingface.co./datasets/yahma/alpaca-cleaned)
The model is finetuned using [unsloth](https://github.com/unslothai/unsloth) library and we provide inference code using the same for faster inference. Alternatively you can use HuggingFace Library for inference.
# Training Details:
The model is trained on approx 650K instruction samples.
1. GPU: 1 A100, 80GB
2. Time: 45 Hours
3. Platform: [E2E Networks](https://www.e2enetworks.com/)
# Installation
`!pip install -U xformers --index-url https://download.pytorch.org/whl/cu121`
`!pip install "unsloth[kaggle-new] @git+https://github.com/unslothai/unsloth.git@nightly"`
# Input Text Format
```
### Instruction: {instruction}
### Input: {input}
## Response: {response}
```
# Inference With Unsloth
```python3
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = False
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "Telugu-LLM-Labs/Indic-gemma-7b-finetuned-sft-Navarasa-2.0",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
device_map="auto"
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
input_prompt = """
### Instruction:
{}
### Input:
{}
### Response:
{}"""
input_text = input_prompt.format(
"Tranlsate following sentence to Hindi.", # instruction
"India is a great country.", # input
"", # output - leave this blank for generation!
)
inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
response = tokenizer.batch_decode(outputs)
```
# Inference with HuggingFace
```python3
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"Telugu-LLM-Labs/Indic-gemma-7b-finetuned-sft-Navarasa-2.0",
load_in_4bit = False,
token = hf_token
)
model.to("cuda")
tokenizer = AutoTokenizer.from_pretrained("Telugu-LLM-Labs/Indic-gemma-7b-finetuned-sft-Navarasa-2.0")
input_prompt = """
### Instruction:
{}
### Input:
{}
### Response:
{}"""
input_text = input_prompt.format(
"Tranlsate following sentence to Hindi.", # instruction
"India is a great country.", # input
"", # output - leave this blank for generation!
)
inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
response = tokenizer.batch_decode(outputs)[0]
```
Refer to the [blog post](https://ravidesetty.medium.com/introducing-navarasa-2-0-indic-gemma-7b-2b-instruction-tuned-model-on-15-indian-languages-31f6565b2750) for sample examples.
Please check our [Code Repository](https://github.com/TeluguLLMLabs/Indic-gemma-7b-Navarasa) for training and inference scripts.
# Developers:
The model is a collaborative effort by [Ravi Theja](https://twitter.com/ravithejads) and [Ramsri Goutham](https://twitter.com/ramsri_goutham). Feel free to DM either of us if you have any questions. |